Экспертная система мастера доменной печи

Е.Б. Иванов (ИПУ РАН)

Рассмотрена экспертная система (советчик) мастера доменной печи, предназначенная для предотвращения аварийных ситуаций, повышения квалификации обслуживающего персонала и обучения студентов старших курсов вузов технических специальностей.

Ключевые слова: экспертная система, советчик, отказоустойчивость, доменная печь.

Доменная печь - непрерывно действующий агрегат шахтного типа, предназначенный для выплавки чугуна и ферросплавов. Протекание ТП в доменной печи основано на противотоке шихтовых материалов и горячих газов. Регулирование сверху производится с помощью изменения интенсивности загрузки шихты, регулирование снизу осуществляется изменением параметров дутья (расход, температура, влажность). Сложность описания данного объекта автоматизации заключается в том, что он является закрытым - наблюдать за происходящими процессами внутри домны не представляется возможным. Накопленные научные знания позволяют соблюдать технологию плавки и являются непременным условием высокопроизводительной и безаварийной работы домны. Однако даже для очень опытного мастера при наличии более трех входных/выходных параметров возникают затруднения по ведению ТП в нормальном режиме. Поэтому целесообразно оснащать доменные печи экспертными системами, помогающими оператору в каждой конкретной ситуации принимать правильное решение.

Экспертная система используется в качестве советчика мастера доменной печи. В случае возникновения аварийных или нештатных ситуаций технолог (оператор) обращается к данной системе "за советом" и практически мгновенно получает ответ по выведению печи на нормальный режим работы. Экспертная система также может использоваться в качестве тренажера для повышения квалификации обслуживающего персонала и обучения студентов старших курсов вузов технических специальностей.

Принцип разработки экспертной системы

Для описания экспертной системы доменной печи использовался инструментарий теории графов. Вершинами являются модели системы, а направляющими ребрами — параметры, которые связывают их входы/выходы. Рассматривается отказоустойчивая система, когда существует вероятность отказа одной из вершин, но модель продолжает работать в нормальном режиме за счет применения других каналов связи (рис. 1).

На первоначальном этапе используется логическая модель (лм) как основная, применяемая в опера-

тивном управлении с целью предотвращении аварийных ситуаций и сокращения числа простоев. Далее, выходные параметры лм подаются на вход моделей: балансовой (бм), описывающей расчет материального и теплового балансов плавки, и технологической (тм), учитывающей основные расчетные показатели для более полного описания ТП. Следующая физикохимическая модель (фхм) участвует в управлении перераспределением химических элементов между чугуном и шлаком при заданной температуре и, как следствие, получении продукции необходимого состава и качества, контролируемого аналитической моделью (ам). Цель последней – проведение качественного анализа продукции с помощью системы Rapid на основе базы данных американского общества стандартов и материалов (ASTM) и дальнейшее сравнение результатов с образцами, принятыми в системе за эталон. Также в разработанной экспертной системе доменной печи применяются модели экономики (для расчета себестоимости продукции) и безопасности жизнедеятельности (для определения безопасности работы персонала).

Более подробное описание системы управления доменной печи представлено на рис. 2. В качестве вершин все также выступают разрабатываемые модели, а в фигурных скобках, расположенных напротив соответствующих пунктов, представлены параметры, которые осуществляют взаимосвязь моделей через ребра графа.

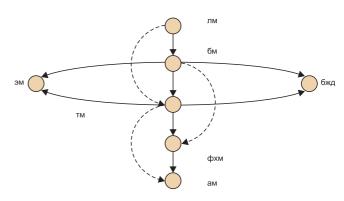


Рис. 1. Граф объединенной модели экспертной системы доменной печи

ПРОМЫШЛЕННОСТИ

R, D, W, T – расход, давление, влажность и температура дутья соответственно: Z – интенсивность загрузки Π – производительность, K – расход кокса, *Ш* – выход шлака Tn – температура печи; $P\partial$ — давление дутья. еский состав компонентов R. D. W. T - расход, давление, влажность и температура дутья соответственно; К - расход кокса Tn – температура печи; $P\partial$ – давление дутья Химический состав компонентов: Tn - температура печи; $P\partial$ — давление дутья.

Q1, Q2 – тепловые избытки доменного процесса в центре и на периферии печи

Рис. 2. Представление графа экспертной системы

Описание моделей экспертной системы

 Π — производительность

Логическая модель доменного процесса состоит из 17 элементов или логических таблиц, поэтому здесь не используется очередь сообщений. Входами являются значения переменных, характеризующих устройства, с помощью которых оператор управляет ТП. Так как цель регулирования — удержание всех наблюдаемых параметров в "норме", то выходы – значения

наблюдаемых переменных: уровень засыпи (H_i) , скорость схода шихты (V_i) , теоретическая температура горения кокса (T_i) , температура колошникового газа (T_{KI}) и содержание кислорода (O_2K) и водорода в колошниковом газе (H_2K) . Управление домной осуществляется следующими параметрами: расход (R), температура (T_{π}) и влажность (W) дутья (регулиров-

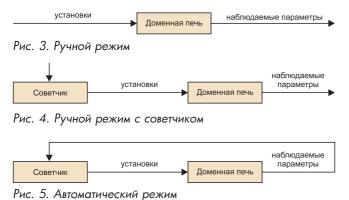

дутья (К) в виде трехзначной логики Входы Выхолы D W Χ 0 Χ 0

Таблица 1. Модуль преобразователя

параметров дутья (D, W, T) и топливных добавок в качество

ка снизу); расход топливных добавок и кислорода (D); загрузка центра и периферия печи (Z_i) (регулировка сверху). Входы (X_i) и выходы (Y_i) различных элементов схемы соединены между собой коммуникационными каналами, по которым распространяются значения сигналов.

Тренажер мастера доменной печи построен на базе трехзначной логики [1, 2], когда используются понятия отклонения наблюдаемых параметров от нормы. Пред-

полагается, что нормальные значения наблюдаемых параметров определены интервалом $X_{\text{ном}} \pm \Delta$, в пределах которого X принимает значение "норма" (=). В качестве примера рассмотрим модуль преобразователя параметров дутья (табл. 1) и формулы, описывающие их (1-3). Величины характеризуется тремя качественными уровнями: меньше нормы (0), норма (=), больше нормы (1).

$$K_{0} = DW \, \overline{T} \vee D \, \widetilde{\widetilde{W}} \, T \,, \tag{1}$$

$$K_{X} = DWT, \tag{2}$$

$$K_{1} = DW \, \widetilde{\widetilde{T}}, \tag{3}$$

$$K_X = DWT,$$
 (2)

$$K_1 = DW\widetilde{\widetilde{T}},\tag{3}$$

где K_0 , K_X , K_1 — значения выходного параметра качества дутья в режимах меньше нормы, норма и больше нормы; \overline{i} , i, \widetilde{i} — задаваемые параметры в режимах меньше нормы, норма и больше нормы. Для управления доменной печью предусмотрено три режима:

1) ручной (рис. 3), когда оператор задает значения управляемых параметров для исполнительных механизмов в терминах: "меньше нормы", "норма", "больше нормы";

2) ручной с советчиком (рис. 4), когда советчик в каждом достигнутом состоянии выдает желаемые уставки (так же, как и в ручном режиме оператор задает значения параметров, соглашаясь или изменяя рекомендации советчика);

> 3) автоматический (рис. 5), когда управление печью осуществляется экспертной системой без вмешательства оператора.

> На обработку входных воздействий требуется некоторое время — такт порядка (величина, характеризующая число операций, выполняемых экспертной системой за единицу времени; под выполнением операции подразумевается обработка базы знаний

за один цикл; в нашем случае 1 такт = 1 секунде), а перевод печи в желаемое состояние может потребовать нескольких тактов, на каждом из которых должны использоваться разные воздействия. Использование модели возможно, если из любого ее состояния существует цепь переходов в нормальный режим. Контроль управляемости осуществляется путем последовательного перевода модели во все возможные состояния, для каждого из которых формируются варианты управляющих воздействий.

Балансовая модель разработана для соблюдения материального баланса в печи, а именно баланса по марганцу, основности шлака, выходу чугуна из рудной смеси, марганцевой руды и известняка. По составленному балансу определяется необходимое количество железорудной и марганцевой руды, известняка, кокса, природного газа, дутья для сжигания углерода и природного газа, образовавшееся количество колошникового газа, шлака, водяного пара.

При построении данной модели было установлено, что ее переменные являются одновременно входными для балансовой модели и входными/выходными для логической модели (температура колошникового газа (T_{KI}), влажность (W) и температура дутья (T_{II}), расход природного газа (D)).

Входные переменные модели характеризуют конкретный режим плавки, а также состав сырья, материалов и основного продукта плавки — чугуна. Все входные переменные модели принимают значения из множества положительных чисел:

- состав чугуна, который требуется получить в доменной печи;
- состав агломерата, окатышей, марганцевой руды, флюса, золы кокса, состав природного газа;
- данные условий плавки: температура дутья ($T_{I\!\!J}$), чугуна ($T_{I\!\!J}$), шлака ($T_{I\!\!U\!J}$), колошникового газа ($T_{K\!\!\Gamma}$), данные по составу дутья и др.

Выходные переменные модели характеризуют составы побочных продуктов плавки — шлака, колошникового газа, а также описывают статьи теплового и материального балансов.

Если для производства чугуна используется смесь материалов, то сначала вычисляется содержание каждого из ее компонентов Kcm_i , например, Fe , Si , Mn или др. в сырьевой смеси по формуле [3]:

$$KcM_i = \sum_j \alpha_j Kmam_{ij},$$
 (4)

где Kmam_{ij} — содержание i-го компонента смеси в j-ом сырьевом материале (окатышах, агломерате и др.); α_j — содержание j-ого сырьевого материала (окатышей, агломерата и др.) в сырьевой смеси. Затем для определения значений расхода компонентов шихты используют известную систему балансовых уравнений вида [2]:

$$\begin{cases} Q_{PC} \cdot (PC) + Q_{MP} \cdot (MP) + Q_{H} \cdot (H) = 100, \\ (Mn_{PC}) \cdot (PC) + (Mn_{MP}) \cdot (MP) + (Mn_{H}) \cdot (H) = 0, \\ (RO)_{PC} \cdot PC + (RO)_{MP} \cdot MP + (RO)_{H} \cdot H = 0, \end{cases}$$
(5)

где PC — расход рудной смеси, кг/100 кг чугуна; MP — расход марганцевой руды, кг/100 кг чугуна; M — расход известняка, кг/100 кг чугуна; M — количество чугуна, образующегося в доменной печи при проплавлении 1 кг данного шихтового материала, кг чугуна/ кг материала, определяемое для каждого компонента.

Технологическая модель доменной печи представляет собой набор математических формул, поясняющих и помогающих оператору контролировать рабочий ход печи. Такое предоставление дает дополнительное понимание ТП и дополнительные возможности для безаварийной работы. Основными показателями являются производительность печи (6) и расход кокса, а также соответствующие им параметры — длительность выпуска чугуна (7) и число выпусков чугуна в сутки (8) [4].

$$\Pi = (K \cdot H_{p/k} \cdot Fe_{III}) \cdot 0.95 = K/Q_K, \qquad (6)$$

где Π — производительность печи, т/сут; K — количество сожженного кокса, т/сут; $H_{p/\kappa}$ — нагрузка р/к; Fe_{III} — количество проплавленного Fe шихты в сутки; 0,95 — степень использования железа шихты; Q_{κ} — расход кокса, т/т чуг;

Течь обучения охотнее всего топится углем экспертных знаний...

Журнал "Автоматизация в промышленности"

$$\tau_{\scriptscriptstyle \theta} = \Pi/(60 \cdot \rho_{\scriptscriptstyle q} \cdot V_{\scriptscriptstyle q} \cdot Z \cdot 0.785 \cdot d_{\scriptscriptstyle JETKH}), \tag{7}$$

где $\tau_{\scriptscriptstyle \theta}$ — продолжительность выпуска чугуна, мин; $\rho_{\scriptscriptstyle q}$ — плотность чугуна, г/м³; $V_{\scriptscriptstyle q}$ — объем выпускаемого чугуна, м³/сут; Z — число выпусков чугуна в сутки; $d_{\scriptscriptstyle ЛЕТКИ}$ — диаметр чугунной летки, м;

$$Z = (q_{\mu}^{u} + q_{\mu}^{w}) \cdot 1440 / (S_{\Gamma} \cdot h_{M} \cdot E + ((q_{\mu}^{u} + q_{\mu}^{w}) \cdot \tau_{e}), \quad (8)$$

где q_n^4 , q_n^{11} — объемные скорости накопления чугуна и шлака, м³/мин; 1440 — число минут в сутках; h_M и S_T — высота и площадь поперечного сечения металлоприемника, м, м²; E — коэффициент заполнения горна чугуном и шлаком, м³/м³.

Физико-химическая модель. При разработке данной модели возникла задача перераспределения химических элементов между чугуном и шлаком при заданной температуре и давлении дутья в печи, что позволяет оценить химический состав и физические свойства получаемого материала. Решением является использование вышеуказанных параметров (на входе) из расчета технологической модели и получение энергии Гиббса максимально приближенной к равновесию ($\Delta G \rightarrow 0$). Таким образом, можно установить оптимальную рабочую температуру в печи для получения продукции необходимого химического состава и качества.

Развитие и завершенность восстановительных процессов оценивается термодинамическими расчетами с использованием современных теорий и моделей металлического и оксидного растворов [5]. В качестве примера представим распределение кремния между чугуном и шлаком по реакции взаимодействия кремнезема в шлаке и углерода в чугуне:

$$SiO_2 + 2C = Si + 2CO;$$

 $\Delta G = 71230 - 370,62 \cdot T \, \text{Дж/моль}$ (9)

с использованием уравнения изотермы реакции:

$$\Delta G = \Delta G^0 + RT \cdot lnD = -RT \cdot ln(K_c/D), \tag{10}$$

где $K_p = exp(\Delta G^0/(RT))$ — константа равновесия реакции; ΔG^0 — стандартная энергия Гиббса реакции; ΔG — энергия Гиббса реакции;

 $D = (P_{CO(KOH)}^2 \cdot a_{Si(KOH)} / (a_{SiO2(KOH)} \cdot a_{2C(KOH)}))$ — функция конечного состояния чугуна и шлака (степень готовности продукции); PCO — парциальное давление CO в газовой фазе; $a_{i(KOH)}$ — активности кремния и углерода в чугуне и кремнезема в шлаке.

Модель аналитического контроля. Аналитический контроль позволяет оценивать содержание определяемых компонентов в контролируемом веществе. Результаты аналитического контроля являются основанием для вынесения решения о соответствии или несоответствии химического состава этих веществ регламентируемым требованиям [6]. Возможность повышения качества металлопродукции, обеспечение полного и комплексного использования сырья, безо-

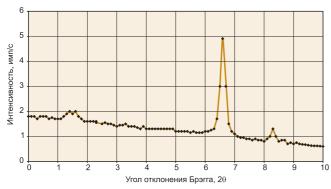


Рис. 6. Рентгенофазовый анализ чугуна доменной печи

пасность производства и охрана окружающей среды в значительной степени определяется состоянием средства аналитического контроля, их действенностью и надежностью.

Для определения масс и концентраций анализируемого чугуна и шлака (количественный анализ), а также обнаружения их компонентов – атомов, ионов, молекул (качественный анализ, рис. 6) используется модель аналитического контроля.

В соответствии с химическим анализом образец состоит из карбида Fe с примесью Cr. (FeCr)₃C. Фаза: Феррит + Цементит. В соответствии с системой ASTM существует некоторое смещение, так как присутствует влияние Cr на содержание Fe.

Модель безопасности жизнедеятельности персонала. В соответствии с Правилами безопасности ПБ 11-493-02, утвержденными Госгортехнадзором РФ [7], доменная печь относится к высокоопасным объектам. Следовательно, для безопасности персонала, обслуживающего доменную печь, в цехе применяют теплоотводящий экран, который представляет собой сварную плиту из стальных листов, с внутренней стороны футерованную огнеупорным кирпичом. Между сварными листами циркулирует вода, которая поглощает тепло и уносит его. Необходимое количество воды для охлаждения экрана, кг/т, определяется по формуле [8]

$$G = (a \cdot E_H \cdot F) / (c \cdot (t_{vx} - t_n)), \tag{11}$$

где а - коэффициент поглощения инфракрасных лучей материалом экрана и водой; E_H — интегральная плотность теплового потока от источника излучения, Вт; F — площадь стенки экрана, M^2 ; c — теплоемкость воды, $Br/(\kappa r \cdot K)$; t_{vx} — температура уходящей воды, °C; t_n — температура поступающей воды, °С.

Травматизм характеризуется коэффициентами частоты KY и тяжести травматизма KT:

$$KY = 1000 \cdot N/Y,$$
 (12)
 $KT = I/N,$ (13)

$$KT = Д/N,$$
 (13)

где *N* — число несчастн межуток времени; *Ч* — тающих за этот же пром ное число дней нетрудо Одним из показател ятность безотказной ра где N — число несчастных случаев за выбранный промежуток времени; Ч - среднесписочное число работающих за этот же промежуток времени; \mathcal{I} — суммарное число дней нетрудоспособности.

Одним из показателей надежности является вероятность безотказной работы агрегата:

$$P = (N' - n')/N', (14)$$

где N' — число включений; n' — число отказов.

Вероятность отказа равна q = 1 - P. Надежность последовательно совершаемых действий (А – первичное действие, B — вторичное действие) равна P(AB) = $P(A) \cdot P(B)$.

Вероятность отказа:

$$q(A + B) = 1 - P(A) \cdot P(B) = q(A) + q(B) - q(A) \cdot q(B).$$

Надежность элемента при его резервировании:

$$P(A + B) = P(A) + P(B) - P(A) \cdot P(B). \tag{15}$$

В настоящее время данная модель совершенствуется введением дополнительных параметров безопасности.

Экономическая модель. Применение в экспертной системе модели расчета экономики производства позволяет определить себестоимость выплавки чугуна следующим образом.

Затраты по каждой і-статье рассчитываются по формуле [9]:

$$3_i = K_i \cdot \underline{U}_i \,, \tag{16}$$

где K_i — расходный коэффициент, показывающий сколько требуется заданного компонента для получения 1 кг чугуна; I_{i} — цена на этот компонент.

Общее количество материалов, задействованных в производстве, определяется как:

$$3_{\theta npouse} = 3_{mon, ueo} + 3_{och, mamep}, \tag{17}$$

где 3_{monsum} — затраты на топливо (кокс и природный газ); $3_{och.матер}$ — затраты на основные материалы (руда, агломерат, окатыши).

Расходы по переделу:

$$3_{\text{nepedea}} = 3_{\Pi_{\text{ep} \text{ monzugo}}} + 3_{\text{3 Hepz.}} + 3_{\text{dp. no nepedeav}}, \tag{18}$$

где $3_{nep_monливо}$ — затраты по переработке и обогащению топлива; $3_{_{3\text{нерг.}}}$ — энергетические затраты на передел; $3_{\partial p_no_nepedeny}$ — другие дополнительные затраты.

____. Побочная продукция:

$$3_{nofo\circ 4n_{-}npo\circ dy\kappa \iota \mu \iota s} = II_{\iota \iota \iota \lambda a} \cdot M^{\iota \iota \iota \lambda} \cdot np_1 + II_{\kappa o \iota_{-} \epsilon a s} \cdot M^{\kappa \iota \epsilon_{-}} \cdot np_2,$$
 (19)

где $M^{\kappa.z.}$, M^{un} — масса колошникового газа и шлака, вычисляемые по методике расчета балансовой модели процесса производства чугуна Рамма-Похвиснева, кг; II_{uunak} , $II_{kon \ ras}$ — рыночная цена на шлак и колошниковый газ, руб; np_1 — доля шлака, которая идет на продажу; np_2 — доля колошникового газа, которая идет на сторону.

Таким образом, общая себестоимость рассчитывается как:

$$C = 3_{\text{в произ-отходы}} + 3_{\text{передел}} - 3_{\text{побочн продукция}}.$$
 (20)

Если получится, что расчеты себестоимости по формуле (20) меньше рыночной цены, то производство эффективно. В противном случае необходимо пересмотреть затраты по каждой і-статье и целесообразность дальнейшей работы на существующих условиях.

Результаты применения экспертной системы мастера доменной печи

Экспертная система мастера доменной печи разработана специалистами ИПУ им. В.А. Трапезникова РАН. Система реализована средствами языка программирования Delphi. На рис. 7 представлен ее интерфейс, который состоит из графического (профиль доменной печи, слева) и динамического (режим управления, наблюдаемые и регулируемые параметры в виде трехзначной логики с их соответствующими значениями, справа) протоколов.

В качестве примера рассмотрен аварийный вариант работы печи на повышенном расходе дутья ("выше нормы") и низкой температуре дутья ("ниже нормы"). В результате получены отклонения наблюдаемых параметров на периферии печи: температура горения (T_1) и скорость схода шихты (V_1) "ниже нормы", высота столба шихты (H_1) "выше нормы". При включении режима "автомат" печь выходит на нормальный уровень за два такта по времени за счет уменьшения интенсивности загрузки печи на периферии (Z_1). Такая оперативность позволяет оператору (технологу) достаточно быстро принимать правильные решения.

В дальнейшем был проработан вопрос по затрачиваемому времени на выведение доменной печи из возможного аварийного состояния. В результате рассчитано общее время обработки информации $T_{oбш}$ с помощью советчика мастера:

$$T_{obu} = T_1 + T_2 + T_3, (21)$$

где T_1 — время на обработку информации, полученной с доменной печи, мин; T_2 – время принятия решения, мин; T_3 – время на исправление режима работы печи мастером и консультации экспертов, мин.

В таблице 2 представлены данные по затратам времени на обработку аварийной ситуации и изменению режимов управления. Таким образом, советчик в среднем в 2...4 раза быстрее помогает мастеру обработать полученную информацию и провести кардинальные изменения в работе доменной печи.

Впервые экспертная система мастера доменной печи была внедрена в качестве тренажера в учебный процесс Московского института стали и сплавов (Новотроицкий филиал) в 2007 г. На сегодняшний день экспертная система имеет свидетельство о регистрации компьютерных программ для ЭВМ (№2007613391) и рекомендована для внедрения на производстве.

Заключение

В разработанной экспертной системе мастера доменной печи использован принцип гетерогенного моделирования. Это позволяет сократить число ошибок при разработке, проектировании и эксплуатации системы и, как следствие, дать достаточно полное и четкое управление ТП.

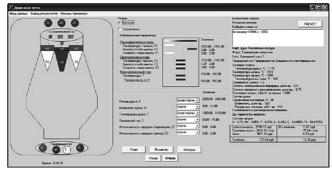


Рис. 7. Интерфейс экспертной системы мастера доменной печи

Таблица 2

Время, мин	Работа мастера без советчика	Работа мастера с советчиком
T_1	12	12
T_2	1030	510
T_3	35	35
$T_{o \delta u_{\!\scriptscriptstyle 4}}$	1437	91 <i>7</i>

Представленная структура системы была адаптирована к функционированию на других высокотемпературных объектах за счет изменения входных/выходных параметров моделей и связей между ними. Так разработаны в качестве советчиков экспертные системы шахтной, туннельной и обжиговой печей, а также шлакоперерабатывающей установки (свидетельства об официальной регистрации компьютерных программ для ЭВМ №№ 2007613839, 2007612365, 2007613838, 2007611236).

Список литературы

- 1. Заде Л. Понятие лингвистической переменной и его применение к принятию приближенных решений. М.: Мир. 1976 г.
- Кудинов Ю.И., Дорохов И.Н., Пащенко Ф.Ф. Нечеткие регуляторы и системы управления // Проблемы управления. 2004. №3.
- Вегман Е.Ф., Жеребин Б.Н., Похвиснев А.Н. и др. Металлургия чугуна. М.: Академкнига, 2004.
- Волков Ю.П., Шпарбер Л.Я., Гусаров А.К. Технолог доменщик. – М., Металлургия, 1986.
- Падерин С.Н., Филиппов В.В. Теория и расчеты металлургических систем. М.: МИСИС 2002.
- Карпов Ю.А., Гиммельфарб Ф.А., Савостин А.П., Сальников В.Д. Аналитический контроль металлургического производства. М.: Металлургия, 1995.
- Общие правила промышленной безопасности для металлургических и коксохимических предприятий и производств (ПБ 11-493-02). Утверждены постановлением Госгортехнадзора России от 21.06.2002 г. № 35, зарегистрированы в Минюсте России 11.09.02 г. № 3786
- Бринза В.Н. Охрана труда и окружающей среды, уч. пособие для практических занятий для всех специальностей. М.: МИСиС. 1985.
- Белобородова В. А., Чечета А. П., Слабинский В. Т. и др. Калькуляция себестоимости продукции в промышленности. М.: Финансы и статистика. 1989.

Евгений Борисович Иванов — аспирант Института проблем управления им. В.А. Трапезникова. Контактный телефон (495)334-93-70. E-mail: ivanov-ics@mail.ru