Математическая модель и общая система управления процессом изомеризации

А.В. Микушева, В.В. Сотников, Д.А. Сибаров, Н.В. Лисицын (СПбГТУ)

Представлена математическая модель (ММ) процесса управления изомеризации на нефтеперерабатывающих предприятиях, позволяющая оптимизировать работу системы управления данным процессом. Предложена структура системы управления процессом изомеризации по температуре, расходу сырья и расходу циркулирующего водородсодержащего газа, а также по контролю давления.

Математическое описание процесса изомеризации состоит из уравнений материального баланса по каждому из компонентов, а также из уравнений балансов тепловой и кинетической энергии. При наличии нескольких фаз возможна запись балансов для каждой фазы отдельно.

Математический аппарат предназначен для описания процесса преобразования входных переменных в выходные подобно тому, как в реальном процессе осуществляется преобразование сырья в целевой продукт. Переменными в математических описаниях являются характеристики компонентов обрабатываемой смеси (главным образом концентрации); координаты точки, в которой определяются характеристики компонентов; показатели процесса в этой точке (скорость процесса, скорость потока, температура, давление, активность катализатора); продолжительность процесса.

Знания о механизмах и кинетике физико-химических процессов основаны на различных идеализациях и приближениях, поэтому и математическое описание, использующее теорию физико-химических процессов, является приближенным. Однако достигаемое приближение обычно оказывается вполне достаточным для решения технических задач [1].

С учетом вышеизложенного рассмотрим полную ММ процесса изомеризации. Современные процессы изомеризации проводят в основном в потоке реагентов, проходящих через неподвижный слой твердого катализатора. Учитывая возможное распределение потока по сечению, для создания математического описания используют модель аппарата с продольным перемешиванием в направлении основного потока [1, 2].

Анализ процессов изомеризации [1] позволяет сформировать основные реакции изомеризации парафиновых углеводородов, содержащихся в сырье, которые представлены в нижеприведенной модели.

Математическая модель динамики реактора представляет собой систему уравнений материальных балансов по каждому из реагирующих веществ и кинетических уравнений.

1. Уравнения материальных балансов по компонентам (см. формулу (1) на стр. 19) [3].

Граничные условия:

$$\begin{split} l &= 0 \colon C_A(0,t) = C_{Ain}, \ C_B(0,t) = C_{Bin}, \\ C_C(0,t) &= C_{Cin}, \ C_D(0,t) = C_{Din}, \\ C_E(0,t) &= C_{Ein}, \ C_F(0,t) = C_{Fin}, \ C_G(0,t) = C_{Gin}; \end{split}$$

Начальные условия:

$$t = 0$$
: $C_A(1,0) = C_A^0$, $C_B(1,0) = C_B^0$,

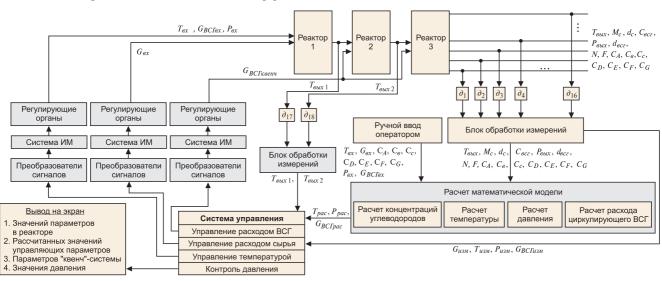


Рис. 1. Структура управления процессом изомеризации,

где ИМ – исполнительный механизм, $д_i$ – датчики $(i=\overline{1,n})$, n=18, G_{ex} – расход сырья на входе, T_{ex} – температура на входе, P_{ex} – давление на входе, G_{BCTex} – расход циркулирующего водородсодержащего газа на входе, T_{pac} – температура рассчитанная, P_{pac} – давление рассчитанное, G_{BCTpac} – расход циркулирующего водородсодержащего газа рассчитанный, G_{usm} – расход измеренный, T_{usm} – температура измеренная, P_{usm} – давление измеренное, G_{BCTusm} – расход циркулирующего водородсодержащего газа измеренный, N – октановое число (ОЧ) изомеризата, F – целевой продукт (отбор изомеризата), C_{BCT} – концентрация водорода в циркулирующем водородсодержащем газе, MC – молекулярная масса сырья, d_{BCT} – плотность циркулирующего водородсодержащего газа, T_{ebx2} – температуры на выходе из первого и второго реакторов, $G_{BCTkBen4}$ – расход холодного циркулирующего водородсодержащего газа (квенча)

$$C_{C}(1,0)=C_{C}^{0},\ C_{D}(1,0)=C_{D}^{0},$$
 $C_{E}(1,0)=C_{E}^{0},$ $C_{F}(1,0)=C_{F}^{0},\ C_{G}(1,0)=C_{G}^{0},$ где $\nu=\frac{G}{S}\cdot 10^{-3};\ S=\frac{\pi D^{2}}{4}$ —

площадь поперечного сечения реактора $[\mathrm{M}^2]$; $r_1, r_2,..., r_{16}$ — скорость реакции $[\mathrm{моль/ч}]$; C_A , C_B , C_C , C_D , C_E , C_F , C_G — концентрации веществ $[\mathrm{моль}]$; i — номер реактора; A — н-пентан, B — изо-пентан, C — н-гексан, D — 2-метилпентан, E — 3-метилпентан, F — 2,3-диметилпентан, G — 2,2-диметилбутан, I — длина реактора $[\mathrm{M}]$; V — линейная скорость основного

потока в реакторе [моль/ч]; G — расход сырья [кг/ч]; D — диаметр реактора [м].

В материальный баланс реактора входит также расчет количества циркулирующего водородсодержащего газа. При моделировании реактора принимается как допущение, что водородосодержащий газ (ВСГ) состоит из водорода, метана, этана, пропана, бутана и пентана. Расчет необходимого количества ВСГ для отвода избыточного тепла, образующегося в ходе реакции изомеризации, производится исходя из состава сырья, поступающего в реактор, а точнее количества бензола в сырье (в статье данный расчет не приводится).

2. Уравнения теплового баланса [2]:

$$\begin{split} \frac{\partial T}{\partial t} &= -\frac{G}{Sd_{C}c_{p}} \cdot \frac{\partial(c_{p}T)}{\partial l} - \\ & \left(\Delta H_{1}^{0}\left(r_{1} - r_{2}\right) + \Delta H_{2}^{0}\left(r_{3} - r_{4}\right) + \Delta H_{3}^{0}\left(r_{5} - r_{6}\right) + \right. \\ & \left. + \Delta H_{4}^{0}\left(r_{7} - r_{8}\right) + \Delta H_{5}^{0}\left(r_{9} - r_{10}\right) + \right. \\ & \left. + \Delta H_{6}^{0}\left(r_{11} - r_{12}\right) + \Delta H_{7}^{0}\left(r_{13} - r_{14}\right) + \Delta H_{8}^{0}\left(r_{15} - r_{16}\right) \right. \\ & \left. + \Delta H_{6}^{0}\left(r_{11} - r_{12}\right) + \Delta H_{7}^{0}\left(r_{13} - r_{14}\right) + \Delta H_{8}^{0}\left(r_{15} - r_{16}\right) \right. \end{split}$$

где T — температура [K]; c_P — теплоемкость реагирующей смеси [Дж/(моль*K]; d_C — плотность сырья [кг/м³]; ΔH_i^0 — теплота реакции [кДж/моль].

3. Уравнения баланса кинетической энергии:

$$\frac{dP}{dl} = -f \frac{d_{\rm C} v^2}{2gD} = -f' v^2 ,$$

где
$$P$$
 — давление [Па]; $f' = f \frac{dC}{2gD}$;

f, f'- коэффициенты трения; g — ускорение свободного падения [9,822 м/ c^2].

Предлагаемая ММ позволяет рассчитывать концентрации углеводородов, температуру и давление. Ниже приведена предлагаемая структура системы управления процессом изомеризации, осуществляющая регулирование температуры, расхода сырья и циркулирующего водородсодержащего газа, а также контроль давления.

$$\begin{cases} \frac{\partial C_A^i}{\partial t} = -\nu \frac{\partial C_A^i}{\partial l} - r_1 + r_2, & \text{уравнение материального} \\ \frac{\partial C_B^i}{\partial t} = -\nu \frac{\partial C_B^i}{\partial l} + r_1 - r_2, & -\infty - \mathbb{B} \\ \frac{\partial C_C^i}{\partial t} = -\nu \frac{\partial C_C^i}{\partial l} - r_3 + r_4 - r_5 + r_6, & -\infty - \mathbb{C} \\ 0 < l \le L, 0 < t \le \Theta : \begin{cases} \frac{\partial C_D^i}{\partial t} = -\nu \frac{\partial C_D^i}{\partial l} + r_3 - r_4 - r_7 + r_8 - r_9 + r_{10}, & -\infty - \mathbb{D} \\ \frac{\partial C_E^i}{\partial t} = -\nu \frac{\partial C_E^i}{\partial l} + r_5 - r_6 - r_{11} + r_{12} - r_{13} + r_{14}, & -\infty - \mathbb{E} \\ \frac{\partial C_F^i}{\partial t} = -\nu \frac{\partial C_F^i}{\partial l} + r_7 - r_8 + r_{11} - r_{12} + r_{16} - r_{15}, & -\infty - \mathbb{E} \\ \frac{\partial C_G^i}{\partial t} = -\nu \frac{\partial C_G^i}{\partial l} + r_9 - r_{10} + r_{13} - r_{14} + r_{15} - r_{16}, & -\infty - \mathbb{E} \end{cases}$$

Описание работы системы управления.

Шаг 1. Оператору вручную ввести начальные данные на входе первого реактора: температуру, давление, расход сырья, начальные концентрации углеводородов.

Шаг 2. Определить процентное содержание бензола в сырье и в зависимости от этого установить ВСГ по линиям рецикла ("квенч" система).

Шаг 3. Проверить соответствие входных данных регламентным значениям. При наличии расхождения откорректировать значения T_{av} , P_{ex} и G_{ex} .

Шаг 4. Проверить температуру смеси, если она ниже T_{pac} , то оператору необходимо изменить установку регулятора в сторону увеличения температуры сырья до T_{pac} .

 $\dot{\it Ш}$ аг 5. Проверить температуру смеси, если она выше $T_{\it pac}$, то оператору необходимо изменить установку регулятора в сторону уменьшения температуры сырья до $T_{\it pac}$.

Шаг 6. Рассчитать по ММ параметры температуры и концентрации на выходе из первого реактора.

Шае 7. Измерить температуру на выходе из первого реактора, определить разницу температур измеренной и вычисленной по MM, если она превышает 5 °C, провести коррекцию MM.

Шаг 8. Проверить не превышает ли измеренная температура на выходе из первого реактора регламентных значений, если да, то для снижения температуры смеси на вход первого реактора подается ВСГ и производится повторный расчет параметров по ММ для первого реактора.

Шае 9. Ввести выходные данные с первого реактора на вход второго и произвести расчет выходных параметров по ММ на выходе из второго реактора. Измерить температуру на выходе из второго реактора и вычислить разницу температур измеренной и вычисленной по ММ, если она превышает 5 °C, провести коррекцию ММ.

Шаг 10. Проверить не превышает ли температура, измеренная на выходе из второго реактора регламентных значений. Если да, то для снижения темпе-

Таблица. Сводная таблица результатов моделирования и оценки качества функционирования процесса изомеризации

	1 реактор													2 ped	актор)	3 реактор																					
№ эксперимента	давление экспериментальное*	Gex экспериментальная st	t входа экспериментальная st	<i>t</i> выхода расчетная	t выхода экспериментальная	$Ca\ ex$ экспериментальная*	$Cb \; ex \;$ экспериментальная *	$Cc\ ex$ экспериментальная *	$Cd\ heta x$ экспериментальная *	$Ce\ ex$ экспериментальная *	$\mathit{Cf} \mathit{ex}$ экспериментальная *	$\mathit{Cg}\ ex$ экспериментальная *	<i>t</i> входа расчетная	<i>t</i> входа экспериментальная	<i>t</i> выхода расчетная	<i>t</i> выхода экспериментальная	давление расчетное	давление экспериментальное	t входа расчетная	t входа экспериментальная	<i>t</i> выхода расчетная	<i>t</i> выхода экспериментальная	$G \epsilon b \iota \chi$ расчетный	N расчетное	Са вых расчетная	Са вых экспериментальная	Св вых расчетная	Св вых экспериментальная	Сс вых расчетная	$Cc\ heta b \iota x$ экспериментальная	Са вых расчетная	Са вых экспериментальная	Се вых расчетная	Се вых экспериментальная	Cfвых расчетная	$Cf \theta b t x$ экспериментальная	Свемх расчетная	С <i>g вых</i> экспериментальная
	атм.	т/ч	ů	°C	°C								°C	°C	°C	°C	атм.	атм.	°C	°C	℃	℃	т/ч														T	
1	26	35	122	133	133	0,3761	0,1041	0,1605	0,1392	0,0764	0,0016	0,0044	133	133	144	143	25	26	144	143	156	159	34	81	0,1286	0,1293	0,3619	0,3618	0,047	0,048	0,1274	0,1276	0,0722	0,0725	0,0004	0,0003	0,1259	0,1204
2	29	40	120	131	129	0,3878	0,1085	0,1531	0,1331	0,075	0,0013	0,0043	131	129	142	140	28	28	142	140	153	153	39	81	0,1326	0,1328	0,3772	0,3629	0,0453	0,049	0,1218	0,1298	0,0709	0,0738	0,0003	0,0003	0,1231	U,12/0
3	28	42	122	133	133	0,355	0,1299	0,1555	0,1278	0,0711	0,0009	0,0033	133	133	144	142	27	27	144	142	155	153	41	81	0,1314	0,1348	0,35	0,3558	0,0513	0,0509	0,1269	0,1259	0,0671	0,0735	0,0003	0,0004	0,944	U,IU/3
4	27	46	130	140	143	0,334	0,1239	0,1639	0,1329	0,0744	0,0011	0,0037	140	143	153	154	24	26	153	154	156	157	45	81	0,148	0,141	0,4023	0,3825	0,0484	0,0478	0,1116	0,1201	0,0743	0,0695	0,0004	0,0004	0,1039	U,IU22
5	25	52	130	140	143	0,3607	0,137	0,1467	0,126	0,0697	0,0005	0,0037	140	143	151	154	22	24	151	154	156	157	51	81	0,121	0,1397	0,4008	0,3926	0,0503	0,0479	0,1182	0,1207	0,0641	0,0697	0,0004	0,0004	0,1263	U,123
6	27	44	130	140	143	0,3614	0,1163	0,1579	0,1359	0,0752	0,0005	0,0038	140	143	156	156	24	26	156	156	157	158	43	81	0,1383	0,1432	0,4104	0,3905	0,0497	0,0487	0,1144	0,1238	9690'0	0,071	0,0005	0,0004	0,1018	U,IU47
7	27	50	130	141	143	0,3634	0,141	0,1452	0,1292	0,072	90000'0	0,004	141	143	154	154	24	26	154	154	153	156	49	81	0,1326	0,141	0,3951	0,3843	0,0462	0,0464	0,119	0,118	0,07	0,0677	0,0005	0,0004	0,1216	0,1220

^{*} Экспериментальные данные совпадают с входными

ратуры смеси на вход второго реактора подать ВСГ и произвести повторный расчет параметров по ММ для второго реактора.

Шаг 11. Ввести выходные данные из второго реактора на вход третьего и произвести расчет выходных данных: температуры, концентраций (по ММ), а также расхода и давления. Выходные значения зафиксировать. Измерить температуру на выходе из третьего реактора и вычислить разницу температур измеренной и вычисленной по ММ, если она превышает 5°C, провести коррекцию ММ.

Шаг 12. По результатам расчета по ММ концентраций изомеров на выходе третьего реактора определить октановое число (ОЧ) (ОЧ на производстве измеряется один раз в смену). Если ОЧ больше 84 пунктов (определяется из химизма процесса) режим изомеризации сохраняется, иначе возможно два варианта изменения режима процесса изомеризации (зависит от выбора главного технолога).

Шаг 13.1. а) Повысить температуру сырья на 3 °С и расход сырья на 2 %.

- б) Измерить температуру сырья. Если она больше $170\,^{\circ}\mathrm{C}$ (задается регламентом), процесс изомеризации прекратить для регенерации катализатора, иначе рассчитать по ММ выход изомеров в третьем реакторе и ОЧ.
- в) Если ОЧ больше 84 пунктов, заданный режим работы установки сохраняется, иначе вновь реализовать пункты а, б и в.

Шаг 13.2. а) Уменьшить температуру сырья на 3 $^{\circ}$ С и расход сырья на 2 $^{\circ}$ С.

- б) Измерить температуру сырья. Если она меньше 117 °С (задается регламентом) процесс изомеризации прекратить для регенерации катализатора, иначе рассчитать по ММ выход изомеров в третьем реакторе и ОЧ.
- в) Если ОЧ больше 84 пунктов, заданный режим работы установки сохраняется, иначе вновь реализовать пункты а, б и в.

В системе также ведется контроль за давлением в третьем реакторе, которое отражает процесс старения катализатора, если оно постоянно увеличивается, то выдается сообщение оператору о принятии необходимых мер для их устранения. Процесс старения катализатора происходит длительное время (около полутора лет), что дает основания считать, что исследуемый процесс в течение длительного времени является стационарным.

После выработки управляющих воздействий они поступают через ИМ и регулирующие органы на объект управления, а также идет вывод на экран оператора значений параметров в реакторе и рассчитанных значений управляющих параметров.

Особенностью предлагаемой системы управления является использование в ней ММ, представляющей собой совокупность материального, теплового и кинетического балансов, позволяющей более точно поддерживать в регламентных пределах параметры,

определяющие выход и качество изомеризата. Наличие MM позволяет также решать задачу оптимизации процесса изомеризации, но в данной статье она не рассматривается.

Предлагаемая структура АСУ процессом изомеризации на основе ММ позволяет более экономно использовать энергоресурсы за счет выбора режимов работы и их коррекции в процессе функционирования установки.

Расчет выходных параметров каждого реактора осуществляется по выше приведенным уравнениям, но при различных входных данных [4]. В таблице приведены результаты моделирования и оценки качества функционирования процесса изомеризации.

Как следует из анализа таблицы погрешность расчетов по ММ не превышает 3 %, что дает основание считать ее адекватной управляемому объекту и приемлемой для использования в структуре системы управления процессом изомеризации.

Выводы

В статье представлена динамическая ММ процесса изомеризации, позволяющая осуществлять расчет

концентрации основных компонентов сырья при его движении по реакторам, техническая возможность измерения которых в настоящее время отсутствует. Эта возможность, реализуемая при использовании ММ в структуре системы управления позволяет повысить качественные характеристики процесса изомеризации (ОЧ) за счет использования дополнительной информации с объекта управления.

Предлагаемая система управления позволяет в процессе изомеризации (а не периодически, один раз в смену) при нарушении процентного содержания углеводородов в реакторах изменять режим работы установки, приближая его к регламентному, что способствует повышению заданного значения октанового числа.

Список литературы

- Жоров Ю.М. Моделирование физико-химических процессов нефтепереработки и нефтехимии. М.: Химия, 1978.
- 2. *Кафаров В.В.* Методы кибернетики в химии и химической технологии. 4-е изд., перераб., доп. М.: Химия, 1985, (учебн. для вузов).
- 3. *Бурсиан Н.Р. и др.* Изомеризация парафиновых углеводородов. М.: ЦНИИТЭнефтехим, 1979.
- 4. Дельмон Б. Кинетика гетерогенных реакций. М., 1972.

Микушева Александра Викторовна — инженер,

Сотников Владимир Васильевич — д-р техн. наук, проф. кафедры САПРиУ, **Сибаров Дмитрий Андреевич** — канд. хим. наук, доцент кафедры химической

технологии нефтехимических и углехимических производств,

Лисицын Николай Васильевич — д-р техн. наук, проф. кафедры ресурсосберегающих технологий Санкт-Петербургского государственного технологического института (технического университета).

Контактные телефоны (812)348-43-85, 774-37-24.

Автоматизированная система оперативной идентификации и прогнозирования состояния автомобиля в течение рейса

_ А.В. Герасимов, Л.Г. Дмитренко (ИПУ им. В.А. Трапезникова)

Сформулирована и обоснована задача создания бортовой автоматизированной системы оперативного прогнозирования состояния автомобиля во время совершения рейса. Показана программно-аппаратная структура такой системы.

Введение

Современный автомобиль является высоконадежным транспортным средством. Однако особенности применения автомобиля в различных природных условиях и выбор водителем иногда недопустимого режима эксплуатации приводят к "неплановым" нарушениям функционирования и отказам узлов и оборудования, происходящим "непредсказуемо" при выполнении рейса. Общее исследование причин аварийного прекращения рейсов показало, что, как правило, отказ автомобиля происходит из-за отсутствия у водителя информации о состоянии узлов и систем автомобиля в текущей дорожной ситуации. Таким образом, предоставление водителю оперативной детализированной информации о состоянии автомобиля позволяет выбрать оптимальный режим эксплуатации автомобиля и снижает риск аварии во время рейса.

В настоящее время применяются автоматизированные системы диагностики неисправностей автомобиля

на стенде в условиях ремонтной зоны автопарка или автосервиса [1], причем для проведения диагностических мероприятий часто достаточно субъективного мнения водителя о наличии неполадки. В стационарных условиях диагностика проводится совместно с техническим обслуживанием автомобиля и по критерию выполненного пробега. При динамических испытаниях автомобиля на специализированной трассе с применением мобильного оборудования диагностика проводится относительно редко и преимущественно для новых моделей автомобилей или их отдельных экземпляров (например, при подготовке к ралли) [2].

Известные современные микропроцессорные диагностические системы, ориентированы на применение специалистами-ремонтниками автосервисов, но не водителем во время выполнения рейса, так как предоставляют исчерпывающую информацию о состоянии узлов автомобиля в специально выполняемом диагностическом процессе. Результаты диагностики ав-