

Математическая обработка сигнала минидиапрофилометра для оперативной ДИАГНОСТИКИ РАБОЧИХ ПОВЕРХНОСТЕЙ

Логвин В.А., Воробьев Ю.С. (ИПМаш НАНУ), Фенченко В.Н. (ФТИНТ)

Изложены некоторые аспекты построения алгоритмов цифровой обработки сигналов, поступающих от датчика первичного преобразователя минидиапрофилометра, предназначенного для комплексной диагностики микро- и макрогеометрических параметров рабочих поверхностей любых деталей самой разнообразной техники. Приведены примеры практической реализации разработанных минипрофилометров, в которых использована цифровая обработка сигнала на основе рассматриваемых алгоритмов.

Представляемые алгоритмы цифровой обработки сигналов, поступающих от датчика первичного преобразователя минидиапрофилометра [1], базируются на проведении периодограмманализа [2] массива первичной информации, последующей ее корректировки в соответствии с амплитудно-частотной характеристикой первичного преобразователя и разделении на составляющие, относящиеся к "шероховатости" и "волнистости" исследуемой поверхности. Эти алгоритмы позволяют существенно расширить функциональные возможности минидиапрофилометра по сравнению с подобными приборами, в которых использован принцип аналоговой обработки сигнала.

Периодограмманализ обеспечивает выявление периодов компонент негармонических периодических составляющих в массиве данных измерений неровностей профиля путем определения соответствующих им максимумов корреляционного отношения средних квадратических отклонений:

$$F_{j} = \frac{\sigma_{\gamma_{j}}}{\sigma_{\nu}} \tag{1}$$

где σ_{ν} – среднее квадратическое отклонение, вычисляемое по всем ординатам у, точек профиля исследуемой поверхности, а σ_{γ^j} – среднее квадратическое отклонение, вычисляемое по средним значениям Y_m^j ординат точек, выбранным через равные промежутки ΔX в исходном массиве ординат, соответствующему проверяемому отрезку - возможному периоду профиля.

В реальной ситуации функция (1) имеет множество максимумов, обусловленных как наличием нескольких периодических составляющих в массиве данных измерений, так и отвечающих "кратным" периодам. При этом установлено, что максимумы, отвечающие "кратным" периодам, имеют близкие значения.

Выделение периодических составляющих проводится после исключения "некорректных" данных при помощи критерия Шовене [2]. Начинается же указанное выделение с наименьшего периода (при таком подходе исключается опасность ошибочного учета "кратных" периодов) и продолжается - пока амплитуда выделяемой составляющей имеет величину, большую предыдущей на значимый процент. Кроме того, с целью более надежной фильтрации "кратных" периодов, авторами предлагается использовать в процессе определения искомых периодов ступенчато изменяющуюся дискретность:

$$\Delta x^{j} = f(l^{j}) = \begin{cases} \Delta x_{0}^{\min} \\ \Delta x_{0} + l^{j} \frac{a}{b} \text{ при } \Delta x_{0} > l^{j} \frac{a}{b} \end{cases}$$

$$l^{j} \frac{a}{b} \text{ при } \Delta x_{0} \leq l^{j} \frac{a}{b}$$

$$\Delta x^{\min}$$
(2)

где l_i — искомые периоды; ΔX_0^{min} — минимальная дискретность для поиска периода l^{l} , определяемая техническими возможностями микропроцессора; $b \ge L^j/l^{min}$ — простое число, равное ближайшему числу из таблицы простых чисел; L^{j} — длина измеренной (обрабатываемой) трассы, достаточная для вычисления Y_m^j и σ_{y^j} , согласно МИ41-75 и экспериментальным исследованиям на минимальную погрешность; $l^{min} = 0.01 \text{ мм} - \text{минимально возможный период, } a$ простое число, выбираемое из таблицы простых чисел на порядок меньших, как минимум, простого числа bи определяемое экспериментальными исследованиями по минимуму времени счета и погрешности.

В результате, из массива данных измерений неровностей профиля будет выделено несколько периодических негармонических составляющих (как показали эксперименты, их число обычно колеблется от 2...3 до 6...8 в зависимости от характера обработки исследуемой поверхности) и некоторая (обычно достаточно малая) непериодическая составляющая.

После выделения периодических составляющих проводится их коррекция в соответствии с амплитудно-частотной характеристикой первичного преобразователя. Полученный в результате массив данных максимально соответствует "реальным" ординатам точек профиля исследуемой поверхности.

При дальнейшей обработке сигнала вычисляется (вначале приближенно, с учетом волнистости) параметр R_{a} (средняя арифметическая величина неровностей профиля исследуемой поверхности). Далее из

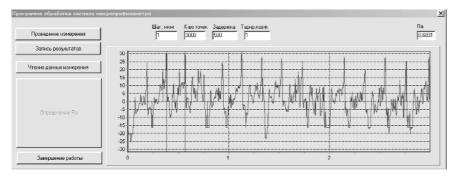


Рис. 1. Вид экрана ПЭВМ при работе программы обработки сигнала минипрофилометра

Рис. 2. Общий вид минипрофилометра для контроля шерохова- шероховатости поверхтости лицевых поверхностей деталей кузова автомобилей

Рис. 3. Компьютеризованная универсальная установка активного контроля шероховатости поверхностей мало- и крупнога- нения параметра R_a осубаритных деталей

стандартного ряда: 0,08; 0,25; 0,8; 2,5... выбирается базовый период (отсечка шага), соответствующий значению предварительно вычисленного параметра R_a и являющийся основхарактеристикой ности [3]. Затем из массива данных исключаются составляющие, периоды которых больше базового периода, т. е. относятся не к шероховатости, а к волнистости, и, если такие составляющие есть (в ряде случаев они могут отсутствовать), уточняется значение параметра $R_{\rm s}$.

Последующие уточществляются путем его вычисления с помощью

базового периода, ближайшего меньшего значения по отношению к ранее выбранному, и если опять окажется, что обрабатываемый массив данных содержит составляющие, периоды которых не относятся к шероховатости, то и эти составляющие исключаются, после чего параметр R_a снова уточняется. И так до тех пор. пока не останется ни одной составляющей, относящейся к волнистости.

Описанные алгоритмы были реализованы в виде программы, функционирующей на ПК в среде Windows 98, к которому подключался первичный преобразователь (в экспериментах использовался преобразователь на базе пьезоэлемента с механической протяжкой измерительной иглы). Длина трассы измерений составляла 6 мм, число точек на ней -3000 ед. (см. рис. 1).

Одним из главных преимуществ разработанной программы является обеспечение практически неограниченных возможностей по расширению функций создаваемых минидиапрофилометров за счет увеличения числа контролируемых гостирован-

ных параметров [3], а также параметров, которые разработаны и утверждены в различных отраслях промышленности. К последним можно отнести, например, "ребристость", глубину рисок, толщину напыления, износа и т. п. Причем указанное расширение функциональных возможностей упомянутых приборов будет реальным и при одновременном существенном уменьшении их массогабаритных параметров. Данная миниатюризация, в свою очередь, позволит значительно повысить степень адаптации минидиапрофилометров к любым труднодоступным поверхностям, шероховатость которых необходимо контролировать (в частности крупногабаритных деталей) в самых разнообразных условиях их изготовления, эксплуатации или ремонта.

С целью практической реализации выполненных разработок, изготовлена опытная партия модифицированных минипрофилометров типа "Профиль-03", которая уже внедрена на Тольяттинском заводе АвтоВАЗ (Россия) – рис. 2, и на Харьковском заводе Электротяжмаш (Украина) – рис. 3.

Следует отметить, что внедряемые и разрабатываемые минипрофилометры имеют уникальную коммерческую ценность, т.к. являются предметом серийной коммерческой реализации обширного семейства приборов, представляющих собой новое перспективное направление в технологии машинои приборостроения.

Список литературы

- 1. В.А. Логвин, Ю.С. Воробьев, В.Н. Фенченко. Разработка и освоение в производстве, технологических процессах и научных исследованиях универсальных портативных минидиапрофилометров // Тезисы докл. ІІ межд. науч. техн. конф. Москва-Егорьевск, ЕАТКГА, 1997.
- А. Уорсинг, Дж. Геффнер. Методы обработки экспериментальных данных. М.: Изд. иностранной литературы, 1953.
- 3. ГОСТ 2789-73. Шероховатость поверхности. Параметры, характеристики и обозначения. М.: Изд. стандартов, 1990.

Логвин Владимир Анатольевич — канд. техн. наук, директор НПП "Микрон", ст. научный сотрудник, **Воробьев Юрий Сергеевич** — д-р техн. наук, проф., зав. отделом N 12 Института проблем машиностроения им. А.Н. Подгорного НАНУ,

Фенченко Владимир Николаевич — канд. физ.-мат. наук, нач. сектора специального конструкторскотехнологического бюро по криогенной технике Физико-технического института низких температур. Контактные телефоны: (10380572) 66-41-11, 95-95-95, 94-15-24, 30-85-83. E-mail: vorobiev@ipmach.kharkov.ua