Интеллектуальный способ упаковки

А.К. Бурочкин (Компания Eaton)

Представлены особенности инновационной коммутационной системы SmartWire-DTTM, разработанной компанией Eaton. Приведены примеры оборудования, которое можно интегрировать в SmartWire-DTTM. Описывается применение технологии SmartWire-DTTM на заводе по производству упаковки Huhtamaki, позволившее существенно упростить производственный процесс, сделать его более современным и экономичным.

Ключевые слова: упаковка, автоматизация, коммутационная система, экономия.

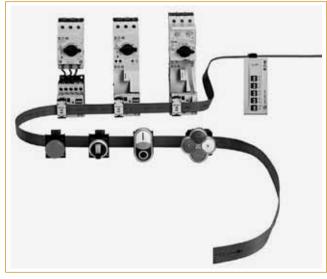
Сегодня клиенты чаше заинтересованы не просто в техническом решении со сложными конфигурациями дорогостоящих устройств, но в развертывании полной системы управления от единого поставщика, простой в обращении и недорогой в обслуживании. Всестороннее и тщательное исследование требований клиентов определило цель разработчиков Eaton — отход от сложных и требующих привлечения высококвалифицированных специалистов решений к более простым, прозрачным схемам на базе последних стандартов.

Требованиям современных клиентов полностью соответствует инновационный дукт SmartWire-DT^{тм}. Уникальность данного продукта заключается в том, что он дает возможность объединить все элементы (от лампочки до ПЛК) в единую сеть с помощью одного кабеля. Питание и сигналы управления переда-

ных проволов отпалает.

ются по одному шлейфу, в ре- Рис. 1 зультате чего надобность в прокладке дополнитель-


В SmartWire-DT™ компания Eaton использует современные технологии plug & play («включай и работай») (рис. 1), позволяющие значительно упростить работу пользователей. Данная система не только сокращает во много раз затраты на проект, экономит не только место в шкафу, но и время - один из основных факторов, позволяющих быть конкурентоспособным на рынке сегодня. SmartWire-DT $^{\text{\tiny TM}}$ сокращает время на проектирование, монтаж и запуск в эксплуатацию. С помощью этой системы можно соединить устройства плавного пуска, автоматические выключатели и узлы управления одним шлейфом, что значительно снижает необходимость в подключении цепи управления через модули ввода/вывода. Такая конфигурация сети не требует отдельных программных инструментов, адресация между SWD-компонентами распределяется автоматически, что сокращает число возможных ошибок при монтаже. Благодаря использованию инновационной технологии расширился диапазон сбора информации с таких устройств, как пусковая сборка защиты двигателя (ручное/автоматическое управление, причина аварийного останова, фазное напряжение и т.д.), что существенно облегчает выявление причин остановки агрегата и сокращает время и число простоев.


Одним из основных преимуществ данного продукта является его универсальность, а именно: возможность использования стандартного оборудования Eaton (пускатели, автоматические выключатели, кнопки, лампочки и т.д.) (рис. 2).

В последнее время в портфолио компании появилось несколько новых линеек оборудования, которое можно интегрировать в SmartWire-D $T^{\text{\tiny TM}}$.

> Одним из таких устройств является панель оператора с функциями ПЛК серии XV 102. Благодаря встроенному ПЛК устройство позволяет отказаться от использования внешнего контроллера. В этом случае операторская панель может выполнять логическую программу управления объектом, являться мастером сети, состоящей из 99 устройств. Панели данной серии выпуска-

ются с диагональю 3,5", 5,7" и 7". Устройства имеют одну из самых маленьких монтажных глубин, что дает возможность устанавливать их в компактные щиты управления, а также использовать в машинах и механизмах.

Панели оператора XV 102 разработаны в соответствии с директивой ATEX 94/9/EC, что дает возможность применять их в загрязненных средах. Они имеют Ethernet-порт, USB-порт и слот для SD-карт. Версии с дисплеями 5,7" и 7" снабжены RS-485, опциональным интерфейсом CANоpen или Profi bus DP в зависимости от модификации.

Другим устройством, оснащенным системой SmartWire-DT™ являются новые зашитные автоматы-выключатели двигателя РКЕ 65 с зашитой от перегрузки в широком диапазоне. Они представляют собой альтернативу решению на основе биметаллической конструкции и дополнение к линейке устройств РК Z. В сравнении с устройствами, имеющими тепловой размыкатель, защитные автоматы-выключатели двигателя с электронной зашитой от перегрузки в широком диапазоне характеризуются несколькими основными преимуществами. К ним относятся широкие диапазоны настройки, низкая теплоотдача, классы размыкания выше класса 10, а также точные и чрезвычайно длительные стабильные характеристики размыкания. Широкие диапазоны настройки на заданный ток сокращают число вариантов до 80% в сравнении с устройствами, имеющими биметаллические размыкатели.

Модульный СОМ интерфейс PKE-SWD для защитных автоматов-выключателей двигателя РКЕ12, РКЕ32 и РКЕ65 и интерфейс РКЕ-SWD-32 для комбинаций стартера двигателя MSC-DEA с защитными автоматами-выключателями двигателя РКЕ12 и РКЕ32 позволяют измерять фактический ток привода и тепловую нагрузку двигателя, а также имеют различные функции индикации, например, индикацию диагностики и состояния перегрузки. Передача данных осуществляется при помощи SmartWire-DTTM непосредственно на контроллер и является доступной во всем предприятии для оперативного контроля состояния или для дистанционных задач техобслуживания. Защитный автомат-выключатель двигателя интегрирован в SmartWire-DT™ и к своей основной функции включения/выключения для нормальной работы и защитных функций добавляет дополнительную эксплуатационную готовность, производительность и рентабельность. Это позволяет выполнять профилактическое техническое обслуживание и ремонт, повышая таким образом надежность и эксплуатационную готовность системы, а также превентивный доступ к технологическим данным в эксплуатационной сфере защитного автомата-выключателя двигателя.

Применение технологии SmartWire-DT на предприятии упаковочной промышленности

Компания Huhtamaki Nederland b.v.г. Франскер (Голландия), входящая в состав финской упаковочной группы Huhtamaki, разрабатывает, производит и продает экологически чистые упаковочные материалы для фруктов, яиц, овощей и различной про-

мышленной продукции. Эти продукты продаются не только на голландском, но и на многих зарубежных рынках. Ниһtamaki успешно модернизировала упаковочное производство с помощью инновационной системы SmartWire-DT $^{\text{тм}}$ от компании Eaton.

В качестве сырья компания Huhtamaki Nederland использует утилизированную бумагу, которая перемалывается в волокна с использованием теплой воды, поступающей из сушильной части машины. Из полученной волокнистой массы формируется упаковка, которая затем оформляется в соответствии с требованиями заказчика (таким образом, например, изготавливаются упаковочные коробки для яиц). Своевременная реакция на быстро меняющиеся требования заказчика имеет большое значение, особенно в ходе вывода товара на рынок. Компания Huhtamaki также разрабатывает формы для изготовления промышленной упаковки. Эти формы в основном используются для упаковки мобильных телефонов, телевизоров и других изделий потребительской электроники. Внешний вид, прочность, отделка и качество упаковки - вот факторы, определяющие успех при изготовлении форм. Именно поэтому компания Huhtamaki так высоко ценит применение современных подходов на стадии разработки. Процессы формования бумажного волокна, сушки, прессования и отделки также требуют высокой степени автоматизации.

Компания Huhtamaki использует ПЛК, а также панели оператора для контроля и управления технологическим процессом (ТП). Все компоненты, необходимые для производственного процесса (двигатели и местные станции управления операторов), должны быть надежными и эффективными для эксплуатации в промышленной среде. На ТП не должны влиять такие факторы, как теплый, влажный воздух, удары и вибрация.

На заводе Franeker было установлено большое число машин со светосигнальной аппаратурой RMQ, которые взаимодействуют с управляющим ПЛК, удаленном на большое расстояние. Тестирование машины на производственной линии требовало значительных затрат времени из-за множества используемых проводов. Поэтому Huhtamaki обратилась к системе SmirtWire-DT™, чтобы раз и навсегда избежать трудоемкого тестирования всех проводов управления, соединяющих ПЛК с кнопками RMQ и пускателями двигателей. Интеллектуальная и удобная в использовании коммутационная система SmartWire-DT™ отлично зарекомендовала себя на всех этапах: при разработке, монтаже и вводе в эксплуатацию станка. Благодаря шлюзу Profibus система SmatWire-DTTM была подключена к ПЛК Mitsubishi без каких-либо проблем.

После успешного внедрения коммутационной системы разработчики компании Huhtamaki начали поиск других областей применения технологии SmartWire-DT $^{\text{TM}}$. Задача состояла в расширении

функциональных возможностей имеющихся компонентов: панелей и шкафов распределения. Однако в связи с ограниченным пространством внутри распределительного щита осуществить это было довольно трудно. Однако и здесь благодаря SmartWire-DT™ нашлось решение: пусковые сборки PKZM/DILM, как и кнопки RMQ были оснащены функциональными модулями SmartWire-DT™ и объединены в систему с помощью одного зеленого шлейфа SmartWire-ОТ™. Это исключило необходимость использования модулей ввода/вывода на ПЛК.

Применение системы также позволило существенно упростить кабельную сеть за счет уменьшения числа используемых проводов управления, занимающих пространство в распределительном щите. Благодаря SmartWire-DTTM в распределительном шкафу появилось больше места для дополнительных компонентов, например, для устройств плавного пуска.

Система SmartWire-DTTM позволяет значительно увеличить рабочее пространство, благодаря чему разработчики Huhtamaki решили использовать еще один продукт Eaton — новый автомат защиты двигателя с электронным расцепителем серии РКЕ. Данное устройство может использоваться не только для защиты двигателя, но и для измерения величины тока. За счет этого компания также сэкономила на приобретении токового трансформатора.

Кроме того, операторы получили возможность непосредственного контроля за текущим состоянием электродвигателя и информирования об обрыве фазы. Для повышения экономичности производства компании Huhtamaki необходимо было регистрировать и регулировать фактическое энергопотребление своих систем. Благодаря модулю NZM XSWD-704 в сочетании с выключателем NZM операторы в Huhtamaki получили возможность осуществлять непосредственный контроль и регулировать энергопотребление, а также контролировать фактические значения параметров, определяющие поведение всей установки, таких как ток, напряжение и коэффициент мощности. Полученные данные можно сравнивать с расчетным энергопотреблением, что позволяет оператору регулировать или вносить корректировки в работу установки в случае необходимости.

Бурочкин Алексей Константинович — руководитель отдела управления продуктами Электротехнического сектора компании Eaton. Контактный телефон (495) 981-37-70. Http://www.eaton.ru

ПРИМЕНЕНИЕ ПРОГРАММНО-РЕАЛИЗОВАННЫХ ЛОГИЧЕСКИХ КОНТРОЛЛЕРОВ В СИСТЕМАХ АВТОМАТИЗАЦИИ УПАКОВОЧНОГО ОБОРУДОВАНИЯ

_ Н.В. Козак, Р.А. Нежметдинов (ФГБОУ ВПО МГТУ «СТАНКИН»)

Предложено архитектурное решение для построения систем автоматизации упаковочного оборудования на базе программно-реализованного контроллера управления электроавтоматикой и пассивных периферийных устройств ввода/вывода. Раскрыты механизмы построения программно-математического обеспечения контроллеров. Приведены практические аспекты реализации задачи автоматизированного управления и контроля процессом горизонтального поточного упаковывания'.

Ключевые слова: программно-реализованный контроллер, Soft PLC, система ЧПУ, микроконтроллер, ПЛК, электроавтоматика станка, горизонтальное поточное упаковывание, распределенные системы управления.

Введение

При автоматизации производственных процессов упаковки для управления технологическим оборудованием широкое распространение получило применение ПЛК. Однако в современных условиях наметилась устойчивая тенденция решения данного типа логических задач в рамках систем управления без привлечения дополнительной аппаратуры и системного ПО [1]. Такой подход, названный Soft PLC, позволяет снизить стоимость системы управления и получить ряд преимуществ, таких как: добавление новых функциональных возможностей и модернизация контроллера в короткие сроки; создание

АВТОМАТИЗАЦИЯ

кроссплатформенного приложения, зависящего от решаемой технологической задачи; возможность сокращения времени запуска в эксплуатацию; сохранение вложенных инвестиций в ПО и др.

Архитектурные особенности реализации и применения Soft PLC

Виртуальная модель программно-реализованного логического контроллера (рис. 1), независимо от способа его конкретной реализации, позволяет выделить вертикальные уровни и отношения между ними [2].

На нижнем аппаратном уровне располагается специальная аппаратура для осуществления ввода/выво-

¹ Работа выполнена по Госконтракту №П1313 на проведение НИР в рамках ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009-2013 гг. и договору № 16.120.11.323-МК гранта Президента РФ для государственной поддержки молодых российских ученых.