"Аксиомы" интеграции АСУП и АСУП

Т.Б. Потапова (ООО "ПЛК Системы")

Обсуждаются две проблемы MES-систем в непрерывных производствах, важные при выработке общесистемных решений на первом этапе выполнения проектных работ. Это проблемы эволюции архитектуры MES-систем и интеграции в их рамках подсистем АСУТП и АСУП.

Постановка задачи

Проблемы интеграции АСУТП и АСУП последнее десятилетие являются больше политическими. чем техническими. Об этой интеграции больше мечтают и ей спекулируют, чем де-факто реализуют в проектах. И дело не в злостных умыслах, а по большому счету в том, что сложную проблему рациональной организации информационного пространства предприятия пытаются решить чисто техническими методами. В то время как эти задачи носят системный характер и решаются на стыке разных наук, во многом гуманитарного плана психология, экономика, организация производства и т.п.

Идея интеграции разнородных информационных и управляющих систем в рамках одной информационной сети с представлением каждому пользователю той информации, которая соответствует его функциям управления, действительно, рождает энтузиазм. Ведь если она реализуется, то мы достигаем предельной скорости управления промышленным предприятием во всех его частях и стратах и значит максимальных техникоэкономических и прочих показателей конкурентной способности предприятия.

Можно в разных частных примерах показать, что эту задачу в указанной постановке решить нельзя. Но ограничимся лишь самыми обшими аспектами. Известно, что невозможна строгая математическая декомпозиция общей задачи управления реальным промышленным производством на подзадачи, реализуемые в рамках известных классов алгоритмов и программно-технических средств (ПТС). Известно, что психофизические свойства человека (в т.ч. его памяти) таковы, что он один не может решить весь комплекс задач управления производством. И ни один человек не сможет быть "генеральным конструктором" действительно интегрированной системы в виду ее большой связности. А это все разные аспекты поставленной идеальной задачи.

Практическая задача информационного обеспечения производственного персонала в рамках единой корпоративной сети имеет вовсе не идеальный вид. В последние годы информационноуправляющие системы (ИУС), представляющие информацию персоналу служб управления производственными участками и цехами, выделились в класс MESсистем. Это уровень диспетчерского и технико-экономического управления, лица принимающие решения - диспетчеры, руководители участков и цехов и их технические специалисты, а также сотрудники производственнотехнологических отделов (ПТО) заводов. MES-системы условно находятся в срединном слое автоматизации между АСУТП и АСУП, интегрируя и разъединяя их одновременно.

Проработки MES-систем локализуются для отдельных групп производств. Тема настоящей статьи относится к предприятиям с непрерывным циклом производства — химия, металлургия, теплоэнергетика и т.п.

В настоящей статье изложены два аспекта решения обсуждаемой задачи. Первый – эволюционный анализ, второй - "аксиомы" интеграции. В основе излагаемых результатов:

- опыт длительной эксплуатации многофункциональной системы автоматизации на крупном химико-металлургическом заводе [1],
- научные проработки в рамках новых парадигм автоматизации (децентрализованные нелинейные системы),
- разработка общетехнической ИУС нового поколения [2].

Журнал "Автоматизация в промышленности"

Эволюция архитектуры ИУС

Структура объекта управления MES-система предназначена для решения задач человеко-машинного управления производством (management), а не автоматического регулирования (control) машинами и агрегатами. Основными объектами управления в ней являются отношения людей разного рода и их мышление при решении этих задач. И поэтому отправной структурой при разработке ИУС является организационная. Исходя из круга персонала, участвующего в ИУС, представим эту структуру в принципиальном виде рис. 1. Это относительно типовая структура для большинства непрерывных производств.

На схеме четыре иерархических уровня управления отдельными технологическими установками (I), производственными участками и цехами (II и III) и предприятием (IV). На I уровне операторы установок решают исполнительские (И) задачи технического управления (Т). Задачи более высоких уровней уже сложнее - добавляются организационный (О), экономический (Э) и экспертный (К) аспекты управления. Идет координация внутренних и внешних взаимодействий. Здесь работают уже соответствующие службы, на II уровне – это отдельные технические специалисты в составе службы управления участком, на III — бюро цехов (планово-экономическое, планово-распорядительное, электриков и механиков), на IV — отделы заводо-управления. МЕЅ-системы позиционируются в основном на II и III уровнях, решая задачи оперативного диспетчерского и технико-экономического управления и связи с внешним миром.

Диспетчерское управление агрегатами, материальными и энергетическими потоками (перераспределение между внутренними и внешними агентами) идет практически в режиме РВ и представлено квадратами и прямыми линиями. Его реализует диспетчерский персонал всех уровней. Основной исходной информацией здесь является та, которую поставляют приборные системы автоматизации на отдельных технологических установках. Там, где нет таких систем, информацию о параметрах материальных потоков и о режимах оборудования передают, используя телефон, сводки и рапорты. Вверх по иерархической линии идут исходные данные, сжимаемые на каждом рабочем месте в рамках установленного регламента. Вниз – уставки в виде заданий и ограничений на режимные параметры.

Организационное и техникоэкономическое управление иллюстрируется на рис. 1 эллипсами и кривыми линиями. Это преимущественно функциональное управление, отражающее горизонтальные связи. Чем выше уровень иерархии, тем более сложным оно является, что косвенно отражается в числе технических специалистов, работающих в службах управления и решающих задачи разных его страт. Если на уровне участков главным является диспетчерское управление, то на уровне предприятия — функциональное.

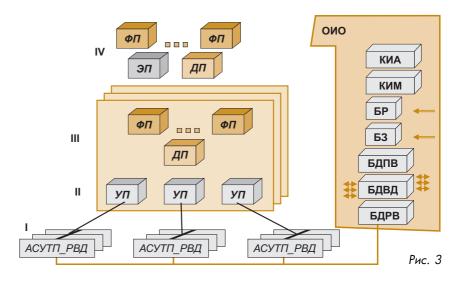
Заметим, что рис. 1 изображает взгляд на организационную структуру предприятия со стороны основного производства (основной функции предприятия), аналогичные "взгляды" могут быть изображены для вспомогательных производств.

Централизованная линейная ИУС (базовый вариант)

На сегодняшний день есть три принципиальных варианта архитектуры ИУС. Базовый вариант — централизованная линейная архитектура (рис. 2). Она опробована 20-летней практикой разработки и эксплуатации больших ИУС. В СНГ работают (почти) такие системы на нескольких заводах, но они индивидуального производства и не тиражируемые. За рубежом нескольким фирмам удалось выйти на общепромышленные системы.

Через специализированные интерфейсы собираются в БД РВ сведения из локальных систем - технологических (SCADA, DCS, контроллеры) и лабораторных (LIMS), а также данные ручного ввода. Двухсторонний интерфейс предусматривается и с бизнес-системами типа ERP, MRP и EAM. Работают специализированные подсистемы обработки данных с целью получения технологических и техникоэкономических показателей. Расчеты идут как по типовым алгоритмам вычисления статистик разного рода, так и специально написанным (балансы, сложные цепочки формул). Архивы исходных и расчетных величин разделяются на

Http://www.ipu.ru/avtprom


краткосрочные и долгосрочные. Для администрирования и модификации системы используются симуляторы случайных и детерминированных сигналов. Специальные клиентские приложения позволяют просматривать архивные данные в необходимых ракурсах и формах (графики, таблицы, мнемосхемы и т.п.). Для каждого пользователя формируется свой комплект приложений. Работает менеджер программ.

Система представляет собой единое целое, в которой каждая часть имеет свою функцию и свой смысл существования только внутри этой системы. Создавать эту систему тоже должен единый слаженный коллектив квалифицированных специалистов. сильный инженерный корпус должен ее эксплуатировать и модифицировать, отслеживая изменения во внешнем мире. Рассогласование между системой и миром проявляется в грязной информации. Чем больше система и существеннее изменения, тем больше знаний и умений нужно для формирования и проведения решений по ее реструктуризации. Их часто не хватает. И все увеличивающиеся объемы грязной информации – беда всех больших систем, построенных из технократических принципов.

Самоорганизующаяся ИУС (предельный вариант)

Эволюция систем автоматизации идет по спирали. На каждом этапе сначала создаются неудобные пользователям, но удобные производителям жесткие централизованные системы. Затем по логике научно-технического прогресса (НТП) появляются дополнительные ресурсы, которые дают возможность рассредоточить составляющие системы, сделать ее распределенной, органично ложащейся на природу автоматизируемого объекта. Они становятся комфортными для пользователя, и идет этап их масштабного распространения.

Так в свое время произошло с локальными регуляторами, кото-

рые из жесткого железного механизма превратились в гибкий конгломерат датчиков, исполнительных механизмов, регуляторов (позже контроллеров) и вторичных приборов (позже SCADA). Лишь десятилетие назад за счет успехов микропроцессорных и компьютерных систем началась децентрализация и широкое распространение локальных участковых систем.

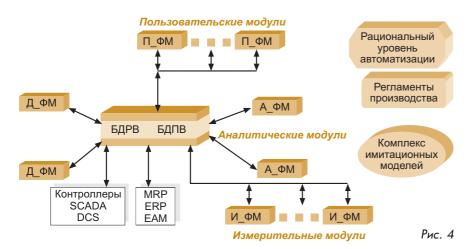
Сегодня аналогичный этап проходят MES-системы.

Они "идут" к своему варианту, предельно соответствующему организационной структуре производства (рис. 3). Это вариант из будущего, где в каждом относительно самостоятельном организационном подразделении работает своя подсистема. Это полноценная подсистема (обозначена параллелепипедом), она имеет своих пользователей, администраторов, БД, интерфейсы связи с любыми другими подсистемами в рамках корпоративной вычислительной сети, свой инструментарий и свои проблемноориентированные задачи. Последние сжимают используемые исходные данные в рамках своих задач управления и внешних требований. Выделяем участковые подсистемы (УП), а на уровне цехов и предприятия – функциональные $(\Phi\Pi)$, диспетчерские (ДП) и экспертные (ЭП) подсистемы. ФП работают в функциональных отделах служб управлений, ДП – в диспетчерских, а ЭП – обслуживают экспертов и референтов руководителей предприятий. Основные исходные данные

ПРОМЫШЛЕННОСТИ

идут снизу от подсистем АСУТП и пультов ручного ввода информации (АСУТП РВД).

Кроме того, есть общая информационная область (ОИО). В ней сосредоточены:


- БД РВ, которые хранят сведения об исходных текущих данных;
- БД производственного времени (БД ПВ), концентрирующие производные "журнальные" данные;
- базы внешних (витринных) данных (БД ВД) для общения с внешними системами:
- базы знаний (БЗ) и регламентов (БР) производства, удерживающих ИУС в жестких рамках технической системы;
- комплекс имитационных моделей (КИМ), который симулирует разные стороны жизни производства и служит для разработки и отладки функционала и ПО составляющих полсистем:
- комплекс инженерных инструментов администрирования (КИА) для ведения внутренней структуры системы.

Чистоту связей и модификацию ИУС обеспечивает инженерный персонал с помощью КИА, чистоту исходных данных от подсистем I уровня — администраторы этих систем, а чистоту всего поля данных управления — конечные пользователи, работающие в рамках БЗ и БР.

Децентрализованная нелинейная ИУС

(актуальный современный вариант)

В настоящее время оптимальным является промежуточный вариант (рис. 4) архитектуры — не-

линейный децентрализованный. Вследствие своей гибкости он позволяет оперативно подстраиваться под изменение политики и ресурсов (материальных, интеллектуальных, эволюционных) на предприятии. Он несет в себе черты обоих вышеописанных вариантов. В рамках этой современной структуры создан проект общетехнической ИУС "Орбита" (разработчик — фирма "ПЛК Системы") [2].

Все составляющие системы условно делятся на четыре части: источники информации, БД общего доступа, относительно самостоятельные подсистемы (модули) и обслуживающие части.

БД общего доступа (БД РВ и БД ПВ) хранят как исходные данные (от датчиков и первичных документов), привязанные к РВ и в виде тегов, так и производные сведения. Последние носят журнальный (реляционный) характер и получаются в результате сжатия исходных данных в соответствующих функциональных модулях. Основные источники информации — подсистемы АСУТП.

Выделяются четыре типа самостоятельных модулей системы: измерительные ($И_{-}\Phi M$), диспетчерские ($I_{-}\Phi M$), аналитические ($I_{-}\Phi M$) и пользовательские ($I_{-}\Phi M$).

Системы АСУТП дают далеко не все исходные сведения о производстве. В частности, не дают их о транспорте и резервуарах, экологии и химических составах материалов и сред, территориальном расположении производственных объектов

и ремонте средств и систем автоматизации и пр. Измерительные модули (И ФМ) восполняют эти пробелы, организуя в рамках специализированных программных продуктов ввод данных операторами и техническими специалистами, их хранение, выполнение расчетов, диспетчеризацию производственных операций и подготовку сводок в виде таблиц, графиков и мнемосхем. Эти модули обслуживают операторов, технических специалистов и диспетчеров, задействованных в выполнении соответствующих функций во вспомогательных производствах.

Диспетчерские модули организуют "бескрайнее" поле данных в структуры, адекватные центральным функциям диспетчерских служб. В рамках этих модулей выполняются также расчеты оперативных технологических показателей (например, среднечасовой расход материала с группы параллельных агрегатов). Пользовательские модули по сути являются инженерной средой ведения сводок и журналов, расчета оперативных ТЭП и подготовки отчетов. Аналитические модули ориентированы в основном на цеховые службы и предназначены для анализа узловых ТЭП, включая составляющие себестоимости, незавершенного производства и дисбалансов.

Большая сложность нелинейной ИУС по сравнению с линейной потребовала введения в нее дополнительных обслуживающих частей:

- базы знаний в виде регламентов производства, которые держат относительно жесткую структуру функциональных модулей, препятствуя появлению грязной информации в витринах, уходящих в БД ПВ данных, и обеспечивая требования ISO-9000,
- инструментов инженерного администрирования, осуществляющие связь всех величин внутри и вне системы.
- имитационной модели, которая делает функционал и инструментарий системы раскрытым коллективу разработчиков и будущих пользователей на всех этапах ее создания,
- методологии отслеживания рационального уровня автоматизации [3], обеспечивающей повышенную живучесть ИУС.

Аксиомы интеграции

Длительный опыт эксплуатации MES-систем традиционной базовой [1] и проектирования актуальной новой архитектуры [2] позволил получить рабочие гипотезы интеграции АСУПП и АСУП. Они условно называются здесь "аксиомами интеграции".

Аксиома интеграции данных

Интеграция подсистем автоматизации на уровне данных (сигналов, тегов и отдельных таблиц) возможна только в среде нижних систем локального и диспетчерского управления и всегда носит выборочный характер:

- в общей шине PB (например, БД PB Industrial SQL Server) собираются данные из разных АСУТП. Они являются лишь приближенными оценками результатами технических измерений, и ответственность за их чистоту несут технические специалисты;
- на экране диспетчера отображаются тренды уровней и расходов из АСУТП, параметры энергопотоков из АСУЭнерго и результаты испытаний из лабораторной системы;
- исходными документами, сопровождающими сырье как приходящий на завод груз, пользуются приемо-сдатчики транспортного цеха, контроллеры ОТК и ОМТС;

- оценками отдельных часовых расходов и запасов обмениваются диспетчеры смежных участков и цехов.

Аксиома интеграции информации

Во всех остальных случаях интеграция подсистем автоматизации идет на уровне структурных единиц (СЕ), как результатов фазовых преобразований на границах самостоятельных интеллектуальных систем, работающих в рамках своих организационных подразделений на разных ступенях производственной иерархии. Проще говоря, подготовленная в диспетчерской подсистеме сводка о работе за смену становится источником исходных данных для подсистем техникоэкономического управления, только получив "визу" диспетчера. Отчет о работе участка или цеха уходит наверх, в т.ч. в АСУП, только за "подписью" ответственного ЛПР. При этом изменение (искажение и уточнение) данных в отчете является штатной операцией, устраняющей неполноту объемов формально контролируемых данных.

Примеры сводок: работа рабочих смен и бригад, результаты лабораторных испытаний, простои оборудования, затраты материалов и энергоносителей, незавершенное производство, нарушения регламентов, партии полученного сырья и отгруженной продукции и т.п.

Качество интеграции автоматически отслеживается по специальной методике на основе протоколов действий ЛПР.

Аксиома интеграции связей

Чистоту связей СЕ обеспечивают подсистемы инженерного администрирования. Каждый тег, попадая из локальных систем в БД РВ, наделяется признаками (генами) для фиксации разных страт (около 15) своего существования в большой корпоративной системе. Связи данных в таблицах ТЭП устанавливает по определенным правилам администратор. Как и в природе, 70% описания СЕ сохраняется в вербальной и подсознательной форме. Потому критерием оптимизации информационных потоков в системе является общий объем фоновых неформализованных данных.

Примеры этих генов: природа величины, источник информации, частотный (временной) аспект существования величины, свойства величины как физико-математической абстракции (шкала, единица измерения и пр.), связи с другими системами и данные о поверках. Примеры фоновых знаний: допуск для балансового расчета, неустойчивость измерения, временная сводка как каприз начальника и пр.

Инженерное администрирование является узким местом больших ИУС. Основу для его "расшивки" создают персонификация ответственности за чистоту данных со стороны пользователей, развитый инструментарий конфигурирования сводок, а также модели связи величин в большой системе, закладываемые в таблицы администраторов.

Аксиома интеграции приемов проектирования

Единая задача управления предприятием с потерями распадается на разнотипные многочисленные подзадачи. Их реализация во времени обеспечивает выполнение общей задачи, но только при наличии свободной воли и тайны собственных решений в ходе диагностики событий и воздействия на них.

В MES-системе синтезируются приемы конструирования АСУТП и АСУП. Например, задачи, которые решает каждый ЛПР, распадаются на проблемные (автоматика регулирования, аналитика планирования), ситуационные (управление в рамках нечетко заданных функций подразделений и служб) и экспертные (разовые задачи повышенной сложности). Они имеют свои приемы организации пользовательского интерфейса. Из АСУТП используются приемы анализа динамических и

статических характеристик, из АСУП – приемы верификации данных и откатов и пр.

Аксиома интеграции научной базы

Общая методологическая база АСУТП, АСУП и MES – фундаментальные науки. Кибернетика обеспечивает построение систем как замкнутых и находящихся в стационарных условиях, синергетика как открытых систем в событийно насыщенной внешней среде. Системный анализ делает систему органической частью единого структурированного организма в контексте общей эволюции мира. Психология нужна для знания моделей человека, чья мыслительная деятельность — главный объект управления в АСУ. Философия необходима для понимания и умения решать сложные задачи. Заметим, что система автоматизации в своем любом аспекте должна быть подобна человеку, его возможностям.

Заключение

Ну, а действительная интеграция та, которой мы жаждем достичь в наших технических системах, идет на уровне коллективов людей, их формального и неформального общения, общей истории и архетипов. Они отслеживают историческую миссию каждого предприятия на фоне общих тенденций НТП, формируя параметры организации производства и систем автоматизации.

Список литературы

- 1. Геймбихнер В. Я., Дубровских В. А., Махонько М. Г., Потапова Т. Б. Система автоматизации на Павлодарском алюминиевом заводе // Промышленные АСУ и контроллеры. 1999. №12.
- 2. Потапова Т. Б., Шварцкопф В. Ф. Структуризация пространства управления производством в ИУС "Орбита" // Мир компьютерной автоматизации. 2002. №4.
- 3. Потапова Т. Б. Комплексная автоматизация производства. Мировые стандарты и рациональный уровень // Автоматизация в промышленности. 2003. №1.

Потапова Татьяна Борисовна — д-р техн. наук., гл. специалист компании "ПЛК Системы". Контактный телефон (095) 105-77-98.