Модернизация центра диспетчеризации в ОАО «АК «Транснефть»

Компания «Делайт 2000»

Рассмотрены программно-технические решения, реализованные в ходе модернизации Центра диспетчеризации в ОАО «АК «Транснефть». Основной комплекс работ направлен на исключение дублирующих операций в ходе управления ТП, эргономику и надежность.

Ключевые слова: диспетчеризация, модернизация, эргономика, проектирование, средства отображения информации, резервирование.

Диспетчерские пункты играют важнейшую роль в работе предприятий нефтегазовой отрасли. При этом нагрузка на диспетчерские пункты постоянно увеличивается, поскольку повышаются требования к надежности и безопасности ТП, находящихся в их сфере контроля. Диспетчерам, с одной стороны, приходится обрабатывать все возрастающие объемы информации, а с другой — быстрее реагировать и принимать решения. Все эти факторы ведут к необходимости регулярной модернизации диспетчерских пунктов и использованию более современных информационных технологий и аудиовизуального оборудования.

Примером такого сценария служит проект, недавно реализованный в ОАО «АК «Транснефть», где диспетчерские пункты в режиме реального времени контролируют процесс транспортировки нефти и нефтепродуктов по системе магистральных трубопроводов. В фокусе внимания диспетчеров одновременно находятся десятки тысяч линейных объектов, расположенных по всей России: 70 тыс. км магистральных трубопроводов, более 500 насосных станций, свыше 22 млн. м³ резервуарных емкостей. Благодаря модернизации Центра диспетчеризации в ОАО «АК «Транснефть» был построен не только диспетчерский пункт, отвечающий современным требованиям компании и отрасли в целом, но и создана единая точка контроля транспортировки потоков нефти и нефтепродуктов (рис. 1).

В ОАО «АК «Транснефть» было несколько причин для принятия решения о модернизации существующего диспетчерского пункта.

Во-первых, для аккумуляции служебной информации диспетчерам, контролирующим транспорт нефти, приходилось частично дублировать функции своих коллег, находящихся в другом здании и отвечающих за транспорт нефтепродуктов. Необходимо было перевести обе диспетчерские смены в единый Центр диспетчеризации, обеспечив при этом возможность раздельного контроля нефти и нефтепродуктов.

Во-вторых, аудиовизуальное оборудование «нефтяного» диспетчерского центра, установленное в 2004 г., выработало срок эксплуатации. Благодаря регулярному обслуживанию оборудование было работоспособным, но уже не соответствовало Рис. 1. Центр диспетчеризации АК «Транснефть»

современным требованиям, предъявляемым к оснащению диспетчерских пунктов.

Планировочное решение

На диспетчерах ОАО «АК «Транснефть» лежит огромная ответственность: они контролируют ТП и предотвращают сбои, которые могут повлечь финансовые и репутационные потери для компании. Поэтому рабочая среда диспетчера должна быть максимально комфортной, чтобы люди работали с полной концентрацией внимания и при этом не уставали, оперативно получали необходимую информацию в виде, максимально удобном для восприятия [1], имели возможность в течение рабочей смены быстро восстановить свои силы для дальнейшей работы. Все эти условия были учтены при создании дизайн-проекта нового диспетчерского центра.

В ходе модернизации диспетчерского центра был спроектирован целый комплекс помещений, в который помимо диспетчерского зала вошли кабинет начальника диспетчерского центра, ситуационный центр, серверная и различные вспомогательные помещения (комната отдыха, кухня, душевая, архив). Основной зал разделен на два помещения полупрозрачной перегородкой: одно предназначено для контроля нефти, другое — для контроля нефтепродуктов. Такая планировка позволила избежать полной изоляции смен и в то же время создать две обособленные рабочие зоны.

АВТОМАТИЗАЦИЯ

Средства отображения информации

Поток информации, с которой работают диспетчеры, обширный и плотный, поэтому для ее отображения создали большую видеостену размером 7,3 х 2 м на базе 18 ультратонких ЖК-панелей 55 дюймов с разрешением Full HD. Небольшой межэкранный зазор между панелями практически незаметен, поэтому изображение на экране воспринимается как целостное.

Особенность видеостены — расположение по дуге. При такой конфигурации экрана задействуется и прямое, и периферическое зрение, поэтому человек одинаково хорошо воспринимает информацию, отображенную и на центральных, и на краевых панелях видеостены.

Информация поступает в диспетчерский центр из разных источников. Одновременно держать в поле зрения и анализировать разнородные данные — задача непростая, поэтому заранее были созданы несколько сценариев вывода информации на экран видеостены. Данные выводятся в нескольких окнах на видеостене: они размещены так, чтобы диспетчерам было удобно одновременно и наблюдать за картиной происходящего в целом, и быстро переключать внимание на детали. Диспетчеры одновременно видят схемы нефтепроводов, данные, поступающие от SCADA-систем, ГИС и других приложений, изображение с камер видеонаблюдения. Например, диспетчер в Москве в режиме реального времени наблюдает за тем, как в специализированном морском нефтеналивном порту Козьмино загружается нефтеналивной танкер. На экран выводятся изображение с видеокамеры, которая снимает танкер, карта акватории с отметкой положения танкера, характеристики процесса: объем, скорость загрузки и т. п. А в случае отклонения процесса от заданных параметров на экране отображаются показатели, которые сигнализируют о проблеме. Вывод информации на видеостену обеспечивают два универсальных контроллера, работающие в режиме 24/7/365.

Для принятия решений диспетчерам периодически требуется дополнительная информация, поэтому на каждом из рабочих мест установлено по два монитора (рис. 2). На них выводятся данные с сервера, необходимые для работы данного диспетчера. Рабочий стол старшего диспетчера оснащен третьим монитором, соединенным с его ПК.

В диспетчерском зале нефтепродуктов информация, необходимая для работы диспетчеров, выводится на видеостену из четырех ЖК-панелей, расположенных в ряд. На каждом рабочем месте установлено по два дополнительных монитора.

Уникальная архитектура используемого решения для создания видеостены позволяет вынести модули электроники

ЖК-панелей за пределы полиэкрана на расстояние до 100 м. За счет этого ЖК-модули значительно снижают уровень шума и выделяемого видеостеной тепла по сравнению с аналогичными решениями.

Серверы и электроника обеих видеостен расположены в отдельном технологическом помещении и не мешают работе диспетчерской смены.

Ситуационный центр

Диспетчерский центр задуман как своего рода штаб, где можно проводить оперативные совещания с коллективным анализом разнородной информации. Для этого создано специальное помещение переговорная комната, которая может играть роль ситуационного центра. Здесь установлена большая ЖК-панель 84 дюймов: на экран выводится любая информация, доступная диспетчерам в обоих диспетчерских пунктах, а также со специализированного ПК. Панель поддерживает разрешение 4 Full HD, поэтому на нее можно вывести изображение с двух источников Full HD пиксель в пиксель. Например, изображение с двух мониторов АРМа конкретного диспетчера выводится в два окна на панели без потери качества изображения.

К оперативным совещаниям можно привлекать участников, находящихся вдали от диспетчерского центра, в первую очередь сотрудников территориальных диспетчерских пунктов. Помещение ситуационного центра оборудовано всем необходимым для проведения сеансов видеоконференцсвязи.

Оснащение рабочих мест диспетчеров

Тяжесть труда диспетчеров отнесена к классу 3.1 «Вредный» (наличие вредных факторов, оказывающих неблагоприятное действие на организм работающего). От половины до трех четвертей своего рабочего времени диспетчер проводит в сосредоточенном наблюдении за объектами, состояние которых постоянно меняется. Плотность сигналов (световых,

Рис. 2. Рабочие места диспетчеров

Рис. 3. Диспетчерская консоль позволяет диспетчерам работать стоя

звуковых) и сообщений, которые диспетчер в среднем воспринимает за один час работы, варьируется от 176 до 300 ед.

Интенсивная работа диспетчеров в течение длительного времени может привести к профессиональным заболеваниям: патологическим изменениям опорнодвигательного аппарата, кровеносной и нервной систем, желудочно-кишечного тракта. Поэтому при оснащении рабочих мест диспетчеров выбор был сделан в пользу профессиональных диспетчерских консолей.

Существенное их преимущество — возможность изменять высоту столешницы, чтобы работать сидя или стоя (рис. 3), тем самым создавая комфортные условия не для «среднестатистического человека», а для конкретных работников [2]. Кроме этого, диспетчеры могут удобно разместить внутри консоли необходимое оборудование, убрать кабели в специальные кабель-каналы, расположить на поверхности стола и специальных панелях мониторы, телефоны и индивидуальную подсветку, чтобы все было доступно, но не мешало. Регулируемые крепления мониторов, которыми оборудована консоль, позволяют установить оптимальные углы наклона дисплеев. Благодаря мягкой и прочной полиуретановой окантовке столешницы сосуды рук не пережимаются даже при длительной работе.

Технические решения для создания комфортной рабочей среды

Во время работы оператор должен не только воспринимать речевую информацию или другие звуковые сигналы, но и иметь возможность быстро реагировать на них. Для исключения повышенного уровня шума в диспетчерском центре рядом с ним было предусмотрено техническое помещение, в котором разместили все электронные компоненты системы, включая электронику видеостены. Последнее позволило не только уменьшить уровень шума в Центре диспетчеризации,

но и снизить выделение тепла, поступающего от системы отображения информации. Все эти меры позволяют снизить уровень усталости персонала при длительной работе в помещении.

Для доступа сервисных инженеров к оборудованию в техническом помещении (серверной) был организован отдельный вход из коридора. Такая планировка позволяет проводить техническое обслуживание и настройку оборудования, не мешая работе диспетчерской смены.

Обеспечение надежности комплекса

Работа диспетчерских центров «Транснефти» не должна прерываться ни на минуту — слишком высока цена рисков. Поэтому одной из основных задач проекта стало резервирование основных компонентов аудиовизуального

комплекса.

В каждом диспетчерском зале размещено по одному резервному APMy. В случае возникновения проблем с рабочим APMoм диспетчер может, нажав несколько кнопок на сенсорной панели управления, быстро переключиться на резервный APM и не прерывать работу. А вышедший из строя APM можно восстановить без помех для работы диспетчеров. Система коммутации зарезервирована в «горячем» режиме: все соединения дублируются, поэтому связь ни с одним из внешних и внутренних источников информации не теряется никогда. Весь комплекс снабжается электроэнергией от источников бесперебойного питания, которые тоже зарезервированы.

Итоги проекта

Диспетчеры «Транснефти» уже приступили к работе в новом диспетчерском комплексе в круглосуточном режиме. По отзывам руководства компании, создан надежный и высокофункциональный комплекс, который позволит решать полный спектр задач по обеспечению непрерывности ТП транспорта нефтепродуктов.

Теперь в режиме реального времени диспетчерская смена непосредственно из головного офиса компании управляет транспортировкой нефти и нефтепродуктов на всех участках, осуществляет контрольсдачи и приема груза в магистральную систему, а также налива в портах и автоматизированных системах налива нефтепродуктов. Дублирование функций разных диспетчерских смен полностью исключено.

Список литературы

- Джон Претлове, Шарлотта Скоруп. Человек в контуре управления. / АББ Ревю. 2007. №1.
- Дж. Паперо, М.Зелник Основы эргономики.М.:Астрель, 2008 г., 319 с.

Контактный телефон (495) 225-22-58. Http://www.d2k@ru