Специализированные датчики давления ДЛЯ НЕФТЯНОЙ, ХИМИЧЕСКОЙ И ГАЗОВОЙ ПРОМЫШЛЕННОСТИ

К.Р. Заргарьян (ООО "БД СЕНСОРС РУС")

Компания BD Sensors специализируется на разработке и производстве электронных приборов для измерения давления и уровня. В настоящий момент в ее продуктовой линейке насчитывается более 40 моделей от экономичных моделей для ЖКХ и общепромышленных датчиков до интеллектуальных многофункциональных приборов. Представлен обзор датчиков давления, применяемых в газовой, нефтяной и химической промышленности.

В нефтяной и газовой промышленности датчики давления применяются в узлах и системах газораспределительных и газоизмерительных станций, для контроля параметров ТП, в составе систем коммерческого учета нефтепродуктов и природного газа и т.д. В рыночных условиях, при современном уровне цен на энергоносители, вопрос точного учета сырья на всех уровнях его добычи, передачи, переработки, хранения и потребления становится важной хозяйственной задачей. К оборудованию и, в частности, к датчикам давления предъявляются весьма жесткие требования, касающиеся их функциональности, надежности, метрологических характеристик, коррозионной стойкости, устойчивости к климатическим воздействиям и.т.д.

Каждая модель датчика имеет множество исполнений, которые отличаются друг от друга типом механических и электрических присоединений, выходным сигналом, наличием или отсутствием разделителя, радиатора или дисплея. "Сердце" датчика – его чувствительный элемент. Во многом, именно его характеристики задают границы применения того или иного датчика и определяют его метрологические характеристики и коррозионную устойчивость. Среди применяемых типов чувствительных элементов известны кремниевые пьезорезистивные и емкостные. Их отличительной особенностью является долговременная стабильность и устойчивость к перегрузкам.

Датчики серии DMD 331-A-W — это экономичные датчики дифференциального давления с HART-протоколом и возможностью локальной установки "нуля" и диапазона. Основная погрешность -0.1% ВПИ. Масштаб перенастройки диапазона — 1:10. Статическое давление – 14 МПа. Датчики имеют вид взрывозащиты "взрывонепроницаемая оболочка".

В отличие от экономичной серии датчики серии DMD 331-A-S (табл. 1) — это высокоточные датчики дифференциального давления с HART-протоколом и возможностью локальной установки "нуля" и диапазона. Основная погрешность до 0,075%ВПИ. Масштаб перенастройки диапазона увеличен до 1:120. Отличаются высоким рабочим статическим давлением – 32 МПа. В данной серии доступны фланцевые исполнения и исполнения с выносными мембранами с длиной армированного капилляра до 10 метров. Датчики имеют вид взрывозащиты "взрывонепроницаемая оболочка" и "искробезопасная электрическая цепь". Типовые области применения – измерение уровня в емкостях (в том числе и герметичных), применение в составе вычислительных комплексов для коммерческого учета газа.

Высокоточные датчики избыточного/абсолютного давления серии НМР 331 (табл. 2) выполнены в полевом корпусе с HART-протоколом. Основная погрешность — 0,1%ВПИ. Масштаб перенастройки диапазона - 1:10, смещение нулевого значения 0...90%ВПИ. Имеется исполнение с низким энергопотреблением и выходным сигналом 0,8...3,2 В, что особенно важно в системах с автономным питанием. Датчики имеют вид взрывозащиты "взрывонепроницаемая оболочка" и "искробезопасная электрическая цепь".

Датчики-реле давления серии DS 200 (табл. 2) со встроенным светодиодным дисплеем помимо унифицированного аналогового выходного сигнала могут иметь до двух релейных выходов (открытый коллектор). При помощи двух кнопок, находящихся под дисплеем, можно настраивать режимы работы релейных выходов, устанавливать пороги и задержки включения и выключения. Прибор хранит в памяти максималь-

Рис. 1. Датчики DMD 331-A-W и DMD 331-A-S (справа)

Рис. 2. Датчики HMP 331 и DS 200 (слева)

H#p://www.avtprom.ru

Таблица 1. Характеристики датчиков дифференциального давления DMD 331-A-W, DMD 331-A-S

Параметры	DMD 331-A-W	DMD 331-A-S	
Диапазон давлений /тип, кПа	37,4; 186,8	125 10 ³	
Статическое давление, МПа	14	32	
Перенастройка диапазона	1:10	1:120	
Выходной сигнал	420 MA/HART	420 mA/HART, 020 mA	
Питание, В	1245B		
Приведенная основная погрешность ⁽¹⁾ , %	±0,1	±0,075	
Дополнительная погрешность, вызванная изменением температуры измеряемой среды ⁽¹⁾ , %/10°C	±0,2	±0,04	
Температура измеряемой среды, °С	-40100		
Температура окружающей среды, °С	-4085		
Чувствительный элемент	емкостной		
Влияние изменения статического давления на нулевое значение ⁽²⁾ , %/10 МПа	±0,14	±0,047	
Маркировка взрывозащиты	1ExdIICT6	OExiallCT4 ⁽³⁾ , 1ExdllCT6	

¹¹⁾ при базовом диапазоне

ные и минимальные измеренные значения давления, что позволяет использовать его в качестве пикового детектора. Идеален для замены до сих пор широко используемых механических манометров.

Еще одна серия датчиков, о которой необходимо упомянуть - это датчики избыточного/абсолютного давления X|ACT: X|ACT i, X|ACT ci (табл. 2). Встроенный жидкокристаллический дисплей с органами управления позволяет конфигурировать датчики "на месте", а не только по HART-протоколу. Причем, в отличие от остальных моделей, при локальной настройке для задания иного нулевого значения и/или диапазона не требуется источник давления. Помимо давления прибор измеряет и температуру среды и хранит предельные значения как давления, так и температуры в памяти. Это позволяет использовать прибор в качестве пикового детектора, как и датчики серии DS 200. Материал мембраны

Рис. 3. Датчик серии ХАСТ

Таблица 2. Характеристики датчиков избыточного/абсолютного давления HMP 331, X/ACT, DS 200

Параметры	HMP 331	X ACT i X ACT ci	DS 200
Диапазон давлений/тип, кПа	1760 10 ³	660 10 ³	460 10 ³
Перенастройка диапазона	1:10		-
Выходной сигнал	420 mA/HART 0,83,2 B	420 mA 420 mA/HART	420 mA 010 B
Питание, В	1236 615 ⁽⁵⁾	1030	1841 1536 ⁽⁵⁾
Приведенная основная погрешность ⁽¹⁾ , %	0,1	0,1 для X ACT і 0,2 для X ACT сі	0,35 0,25 (опция)
Дополнительная погрешность, вызванная изменением температуры измеряемой среды ⁽¹⁾ , %/10 °C	0,02	0,1	0,07 0,3
Температура измеряемой среды ⁽⁴⁾ , °С	-40125	–40125 –25125 для X ACT ci	-40125
Температура окружающей среды, °С	-4085		
Чувствительный элемент	пьезоре- зистивный	пьезорезистивный/ емкостной	пьезоре- зистивный
Маркировка взрывозащиты	0ExiallCT4 ⁽⁶⁾ , 1ExdllCT5	0ExiallCT4	0ExiallCT4

⁽⁴⁾ максимальная температура измеряемой среды при использовании разделителя-радиатора – 300°C

ключительной коррозионной стойкостью, но и высокой устойчивостью к абразивному воздействию. Датчики имеют вид взрывозащиты "искробезопасная электрическая цепь".

Модели серий DMD 331-A-S, HMP 331, DS 200 и X|ACT і могут быть оснащены разделителем или разделителем-радиатором сред, что позволяет измерять давление вязких, высокотемпературных (до 300°C) сред. В качестве материала мембраны разделителя применяется нержавеющая сталь различных марок либо тантал. Датчики внесены в Государственный реестр средств измерительной техники, имеют российские сертификаты и полностью метрологически обеспечены как

датчика ХАСТ сі – керамика, обладающая не только ис- на этапе производства, так и в период эксплуатации.

Заргарьян Карен Рубенович — начальник производства ООО "БД СЕНСОРС РУС". Контактный телефон (495) 380-16-83. E-mail: sales@bdsensors.ru Http://www.bdsensors.ru

"Лаборатория автоматизированных систем (АС)" объявила о выходе нового продукта в линейке ACTest – ACTest-VXI

ACTest-VXI работает с крейтовыми системами в международном стандарте VXI, включает всю функциональность ACTest-Pro. Гарантийный срок обслуживания 10 лет.

Документация соответствует нормам ЕСПД. По желанию заказчика измерительная система на базе ACTest-VXI может быть выполнена в соответствии с требованиями военного применения. В настоящее время интерфейс VXI является наиболее перспективным для создания контрольно-диагностических и высокопрецизионных измерительно-управляющих систем. Стандарт

разрабатывался, в первую очередь, для применения в военно-промышленном комплексе и удовлетворяет большинству военно-промышленных стандартов, включая MIL-45662, соответствует промышленному стандарту качества ISO 9000, а также стандартам на электромагнитную совместимость и помехозащищенность (EN 55011, EN 50082-1). Все технические решения, обеспечивающие эти требования, учтены в аппаратуре VXI еще на стадии проектирования и не требуют дополнительных затрат на их обеспечение при сборке системы и ее эксплуатации.

Http://www.actech.ru

⁽²⁾ устраняется установкой нуля при рабочем статическом давлении

⁽³⁾ только для выходного сигнала 4...20 мA/HART

⁽⁵⁾ для датчиков с выходными сигналами по напряжению

 $^{^{(6)}}$ только для выходного сигнала $4...20~{
m мA/HART}$