

Электронный журнал мойки оборудования

В.О. Тараненко, М.В. Кузнецова (ООО «ПАГ»)

Представлено программное решение, обеспечивающее ведение электронного журнала мойки оборудования. Преимущества от использования данного решения проиллюстрированы на примере «Владивостокского молочного комбината» (г. Владивосток).

Ключевые слова: мойка оборудования, санитарно-гигиенические требования, качество, аналитика.

Для обеспечения и поддержания конкурентоспособности промышленного производства предприятию необходимо постоянно совершенствовать ТП, создавать максимально гибкие производственные линии, позволяющие оперативно переключаться на выпуск различных товаров с минимальными потерями сырья.

Применительно к предприятиям, на которых гигиена должна поддерживаться на высоком уровне (пищевая, фармацевтическая, косметическая промышленность и др.), одним из важнейших ТП, который должен быть оптимизирован для обеспечения конкурентоспособности производства, является СИПмойка (cleaning-in-place, «мыть на месте»). От правильной организации работы СИП-мойки зависит не только скорость переключения линии производства с выпуска одного товара на другой, но и качество выпускаемой продукции, связанное с поддержанием санитарно-гигиенических требований во всех ТП, которое достигается за счет оптимально подобранных режимов и маршрутов мойки оборудования.

СИП-мойка является одним из самых значимых и дорогостоящих ТП, поэтому возникает необходимость в повышении ее эффективности за счет оптимизации затрат и времени проведения мойки.

Ведение журналов мойки

Сегодня СИП-мойки обладают высоким уровнем автоматизации. Но даже на многих высокотехнологичных предприятиях аналитика СИП сводится к анализу журналов мойки, заполненных вручную.

В процессе мойки оборудования собирается большой объем значимой информации: время начала/окончания мойки, скорость, концентрация, температура и др. (рис. 1) При ручном ведении журналов мойки встает серьезный вопрос о возможности анализа эффективности работы дорогостоящего оборудования СИП-мойки. Например, при необходимости проанализировать проблему с мойкой объекта, зафиксированную неделю назад, и выявить повторяемость этой проблемы аналитика, связанная с использованием «рукописного» журнала, зависит от человеческого фактора. Со временем число запи-

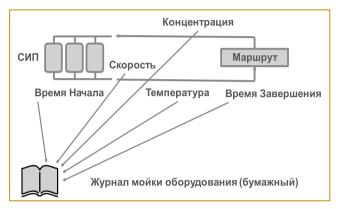


Рис. 1. Структура бумажного журнала мойки оборудования

сей в журнале увеличивается, и такой анализ занимает колоссальные временные затраты, и шансов получить быстро достоверную информацию становится все меньше [1, 2]. При таком подходе остается только надеяться на грамотное ведение делопроизводства и хороший почерк оператора.

Электронный журнал мойки оборудования

Внедрение электронного журнала мойки позволяют вывести СИП на должный уровень контроля и аналитики. Система автоматически регистрирует все необходимые данные и формирует временные отчеты о проведенной мойке по всем контурам. Плюсом внедрения является и то, что решение, как правило, не требует технического переоснащения производства, кроме случаев, когда возникает необходимость в контроле параметров, неучтенных в действующем технологическом процессе. АРМ технолога обеспечивает визуализацию ТП мойки в реальном времени.

Для сбора информации необходимо соединить все СИП-станции в единую сеть, и обеспечить централизованный сбор данных. Каждая СИП станция, как правило, находится под управлением отдельного контроллера. Число контуров в каждой отдельной СИП станции может быть любым (обычно в диапазоне 1...10 ед.).

ПРОМЫШЛЕННОСТИ

Рис. 2. Структурная схема АСУТП мойки оборудования

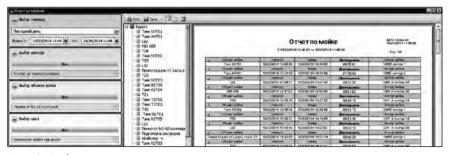


Рис. 3. Табличный отчет по мойке

Ключевой компонент в построении системы — это сервер по сбору данных о прошедших мойках оборудования. Сервер имеет две независимые сети: производственную и промышленную (рис. 2). Такой подход обусловлен простотой в обслуживании и администрировании сетей.

Автоматизированные отчеты как инструменты для службы качества и аналитики

АСУТП мойки оборудования предоставляет возможность использовать собранные в ходе ТП данные для формирования отчетов, удобных для анализа.

Инструменты для службы качества

Табличный вид ответ по мойке по виду представления информации является аналогом бумажного журнала мойки, но имеет ряд существенных преимуществ (рис. 3). Во-первых, все параметры моек регистрируются в автоматическом режиме, архивируются и доступны для просмотра за любой указанный пользователем период времени. Во-вторых, система позволяет задавать фильтры по времени и выбирать различные контуры, объекты или шаги моек. Отчет включает такие данные о проведенных мойках, как: имя объекта, начало/окончание мойки (данные регистрируются автоматически вплоть до секунд), длительность (рассчитывается системой) и контур, по которому осуществлялась мойка оборудования. В отчете фиксируется каждый шаг мойки, включая

дополнительные параметры: температура, проводимость, скорость потока. В зависимости от потребности заказчика в отчете могут фигурировать еще ряд параметров, таких как концентрация и ее изменение в процессе, максимальный поток и т.д.

Представление информации в виде диаграммы Ганта позволяет более наглядно отобразить информацию, чем сухая таблица с цифрами. По оси X пользователем задается промежуток времени, а по оси Y — контур (ы) СИПа. Контуры имеют удобную цветовую индикацию, которая дает информацию о:

- превышении времени шага, то есть мойка вышла за диапазон времени, значит что-то не так и требуется проверка исправности оборудования (анализ причин);
- занижении времени шага. Крайне нежелательная ситуация, когда АСУТП позволяет пропускать какие-то из шагов. Например, оператор сознательно переходит на другой шаг, ускоряя процесс, и тем самым не соблюдается технология мойки. Это частный случай, который нельзя упускать из виду.

Для просмотра деталей можно выбрать интересующую мойку,

и в нижней части экрана отобразится подробная информация по всем шагам этой мойки — все временные и технологические параметры.

Удобный инструмент фильтрации позволяет задать период отображения данных или пользовательский диапазон дат (начало и окончание периода). Также доступны фильтры по типам мойки, контурам и объектам.

Инструменты для аналитики

Диаграмма эффективности работы контуров позволяет понять, насколько оптимально распределены маршруты по контурам (рис. 4).

Выбрав контур, оператор ТП может проанализировать:

- эффективность работы контура (время работы и ожидания);
- занятость контура при отсутствии моек оборудования (сколько времени занимает подготовка к мойке);
- отклонение заданного времени моек (превышение или занижение времени шага);
- распределение времени мойки по шагам. Можно посмотреть насколько шаги отличаются по времени их выполнения друг от друга.

Диаграмма эффективности работы мойки объекта (марирута) — один из самых интересных

инструментов аналитики (рис. 5). По сути это та же диаграмма превышения (или занижения) времен шага, но несколько в другом виде. Каждый столбик отвечает за свой моющий раствор (оборотная вода, щелочь, кислота и т.д.). За 100% принимается длительность шага, заданная в рецепте. Относительно этого уровня видно: где недостаточно хорошо промыта единица оборудования, а где превышено время. Таким образом графический формат наглядно позволяет проследить динамику в мойке одного и того же объекта за последний месяц (может быть проблема с клапанами, падает поток или пора проводить планово-предупредительный ремонт оборудования). Вся эта информация представлена в отчете, и ее можно использовать в аналитике.

Внедрение АСУТП мойки оборудования на «Владивостокском молочном комбинате»

«Владивостокский молочный комбинат» (г. Владивосток) — филиал ОАО «Вимм-Билль-Данн», производителя известных в России соков и молочных продуктов. Завод расширял производственные линии по производству соков. Работы по созданию систем автоматизации выполняла

компания «ПАГ» (Москва). Также компания внедряла электронный журнал мойки оборудования производства на базе собственного ПО.

К моменту выполнения работ на предприятии использовалось несколько СИП-станций, оборудование которых уже было объединено в промышленную сеть. Для реализации электронного журнала мойки оборудования было проведено параметрирование (настройка) ПО под конфигурацию оборудования данного завода. Благодаря интеграции электронного журнала с АСУТП мойки стала возможной автоматическая фиксация всех параметров мойки. Все данные хранятся в БД SQL.

Проект был реализован в течение 1 мес. без остановки производства. Специалисты предприятия получили удобный инструмент для анализа информации, включая:

быстрый поиск, фильтрация данных;

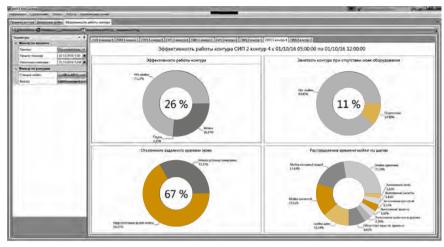


Рис. 4. Эффективность работы контура

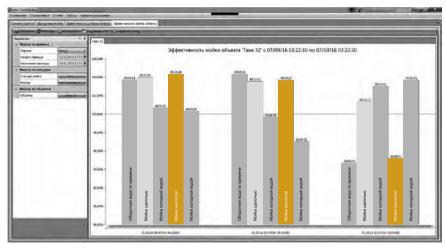


Рис. 5. Диаграмма эффективности работы мойки объекта

- возможность графического анализа, изменение периода выборки;
- формирование электронных отчетов за смену, неделю, месяц;
- фиксирование нештатных ситуаций и отклонений от задания;
- аналитику по эффективности загруженности контуров и статистическим данным применительно к маршруту;
- экспорт отчетов в MS Excel и формат pdf (максимальное число доступных расширений — 12 ед.).

Список литературы

- Friedman B, Kahn PHJr, Borning A. Value sensitive design and information systems. In: Zhang P. Galletta D (eds) Humancomputer interaction in management information systems: foundations. M.E. Sharpe, Inc, New York, 2006. pp 348-372.
- Posard, Marek; Rinderknecht, R. Gordon. Do people like working with computers more than human beings? Computers in Human Behavior. 2015. 51. pp. 232-238.

Тараненко Виктор Олегович — генеральный директор ООО «ПАГ», **Кузнецова Марина Валерьевна** — специалист ООО «ПАГ». Контактный телефон +7 (495) 604-42-03. Http:// PAG.company